Scrapy Documentation
Release 2.2.0

Scrapy developers

xul. 17, 2020

First steps

. Getting help 3
. First steps 5
2.1. Scrapyataglance e e e e 5
2.2, Installation guide L e e e e e e e e e e e 7
2.3, Scrapy Tutorial L e e e e e e e e e e e e 11
24, Examples oL e e 23
. Basic concepts 25
3.1. Commandline tool L e e e e e e 25
32, Spiderso e 35
330 SeleCtorso e e e 46
340 Tems L e e 63
35, TtemLoaders e e e 69
3.6. Scrapy shell L e e e e e 78
37. ItemPipeline e 82
3.8. Feed exports e 86
3.9. Requestsand ReSponses e e e 93
3.10. Link EXtractors o o it e e e e e e e e e e e 107
301 Settings . . . v v v e e e e e e e e e e e e e e e 109
30120 EXCEPUONS . o . v v o o e 137
. Built-in services 141
4.1, Log@Ing . . . o ot e e e e e e e e e e e 141
42, Stats Collection o o i e e e e e e e e e e e e e e e 146
43. Sendinge-mail 148
44, TelnetConsole o o o L e e e 151
4.5. WebService e e e 154
. Solving specific problems 155
5.1. Frequently Asked Questions e e e 155
5.2, Debugging Spiders e e e e e e e e e e e 161
5.3, Spiders Contracts v v i i e 163
54. Common Practices L e e e e e e e 165
5.5, Broad Crawls oL e e e e 169
5.6. Using your browser’s Developer Tools for scraping 173
5.7. Selecting dynamically-loaded content e e 178

5.8. Debugging memory leaks e e e e e e e e e e e
5.9. Downloading and processing files and images e e
5.10. Deploying Spiders o o e e e e e e e e e e e e
5.11. AutoThrottle extension o . o e e e e e e e e e e
5.12. Benchmarking L e e e e
5.13. Jobs: pausing and resuming crawls Lo e
504, COroUtiNeS . . ¢ v v v v v e
S50 ASYNCIO .« . v v o e e e e e e e e e e e
6. Extending Scrapy
6.1. Architecture OVEIVIEW v v vt ittt it e e e e e e e e e e e e
6.2. Downloader Middleware L e
6.3. Spider Middleware e
6.4, EXteNnSIONSt it e e e e e e e e e e e e e
6.5. Core APL o . e e
6.6. Signals L e e e e e e e e e e e
6.7. Ttem EXPOITErS o o v e e e e e e e e e e e e e e e e e e
7. All the rest
7.1, Release notes o o i e e e e e e e e e
7.2, Contributin@ to SCTapy i e e e e e e e e e e e e e e e
7.3. Versioning and API Stability oL
Python Module Index
Index

203
203
206
223
230
235
244
250

257
257
324
328

329

331

Scrapy Documentation, Release 2.2.0

Scrapy is a fast high-level web crawling and web scraping framework, used to crawl websites and extract structured
data from their pages. It can be used for a wide range of purposes, from data mining to monitoring and automated
testing.

First steps 1

https://en.wikipedia.org/wiki/Web_crawler
https://en.wikipedia.org/wiki/Web_scraping

Scrapy Documentation, Release 2.2.0

2 First steps

capiTuLo 1

Getting help

Having trouble? We’d like to help!

Try the FAQ — it’s got answers to some common questions.
Looking for specific information? Try the genindex or modindex.
Ask or search questions in StackOverflow using the scrapy tag.

Ask or search questions in the Scrapy subreddit.

Search for questions on the archives of the scrapy-users mailing list.

Ask a question in the #scrapy IRC channel,

Report bugs with Scrapy in our issue tracker.

https://stackoverflow.com/tags/scrapy
https://www.reddit.com/r/scrapy/
https://groups.google.com/forum/#!forum/scrapy-users
irc://irc.freenode.net/scrapy
https://github.com/scrapy/scrapy/issues

Scrapy Documentation, Release 2.2.0

4 Capitulo 1. Getting help

CAPITULO 2

First steps

2.1 Scrapy at a glance

Scrapy is an application framework for crawling web sites and extracting structured data which can be used for a wide
range of useful applications, like data mining, information processing or historical archival.

Even though Scrapy was originally designed for web scraping, it can also be used to extract data using APIs (such as
Amazon Associates Web Services) or as a general purpose web crawler.

2.1.1 Walk-through of an example spider
In order to show you what Scrapy brings to the table, we’ll walk you through an example of a Scrapy Spider using the
simplest way to run a spider.

Here’s the code for a spider that scrapes famous quotes from website http://quotes.toscrape.com, following the pagi-
nation:

import scrapy

class QuotesSpider (scrapy.Spider):
name = 'quotes'
start_urls = [
'http://quotes.toscrape.com/tag/humor/",
]

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'author': quote.xpath('span/small/text ()').get (),
'text': quote.css('span.text::text').get (),

(continues on next page)

https://en.wikipedia.org/wiki/Web_scraping
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
http://quotes.toscrape.com

Scrapy Documentation, Release 2.2.0

(continued from previous page)

next_page = response.css('li.next a::attr ("href")') .get ()
if next_page is not None:
yield response.follow(next_page, self.parse)

Put this in a text file, name it to something like quotes_spider.py and run the spider using the runspider
command:

scrapy runspider quotes_spider.py -o quotes. json

When this finishes you will have in the quotes. json file a list of the quotes in JSON format, containing text and
author, looking like this (reformatted here for better readability):

[{
"author": "Jane Austen",
"text": "\u20lcThe person, be it gentleman or lady, who has not pleasure in a_
—good novel, must be intolerably stupid.\u201d"
}I
{
"author": "Groucho Marx",
"text": "\u20lcOutside of a dog, a book is man's best friend. Inside of a dog it
—'s too dark to read.\u201d"
}I
{
"author": "Steve Martin",
"text": "\u20lcA day without sunshine is like, you know, night.\u201d"
by

What just happened?

When you ran the command scrapy runspider quotes_spider.py, Scrapy looked for a Spider definition
inside it and ran it through its crawler engine.

The crawl started by making requests to the URLs defined in the start_urls attribute (in this case, only the
URL for quotes in humor category) and called the default callback method parse, passing the response object as
an argument. In the parse callback, we loop through the quote elements using a CSS Selector, yield a Python dict
with the extracted quote text and author, look for a link to the next page and schedule another request using the same
parse method as callback.

Here you notice one of the main advantages about Scrapy: requests are scheduled and processed asynchronously. This
means that Scrapy doesn’t need to wait for a request to be finished and processed, it can send another request or do
other things in the meantime. This also means that other requests can keep going even if some request fails or an error
happens while handling it.

While this enables you to do very fast crawls (sending multiple concurrent requests at the same time, in a fault-tolerant
way) Scrapy also gives you control over the politeness of the crawl through a few settings. You can do things like
setting a download delay between each request, limiting amount of concurrent requests per domain or per IP, and even
using an auto-throttling extension that tries to figure out these automatically.

Note: This is using feed exports to generate the JSON file, you can easily change the export format (XML or CSV,
for example) or the storage backend (FTP or Amazon S3, for example). You can also write an ifem pipeline to store
the items in a database.

6 Capitulo 2. First steps

https://aws.amazon.com/s3/

Scrapy Documentation, Release 2.2.0

2.1.2 What else?

You’ve seen how to extract and store items from a website using Scrapy, but this is just the surface. Scrapy provides a
lot of powerful features for making scraping easy and efficient, such as:

Built-in support for selecting and extracting data from HTML/XML sources using extended CSS selectors and
XPath expressions, with helper methods to extract using regular expressions.

An interactive shell console (IPython aware) for trying out the CSS and XPath expressions to scrape data, very
useful when writing or debugging your spiders.

Built-in support for generating feed exports in multiple formats (JSON, CSV, XML) and storing them in multiple
backends (FTP, S3, local filesystem)

Robust encoding support and auto-detection, for dealing with foreign, non-standard and broken encoding decla-
rations.

Strong extensibility support, allowing you to plug in your own functionality using signals and a well-defined
API (middlewares, extensions, and pipelines).

Wide range of built-in extensions and middlewares for handling:
* cookies and session handling
o HTTP features like compression, authentication, caching
* user-agent spoofing
* robots.txt
 crawl depth restriction
* and more

A Telnet console for hooking into a Python console running inside your Scrapy process, to introspect and debug
your crawler

Plus other goodies like reusable spiders to crawl sites from Sitemaps and XML/CSV feeds, a media pipeline
for automatically downloading images (or any other media) associated with the scraped items, a caching DNS
resolver, and much more!

2.1.3 What’s next?

The next steps for you are to install Scrapy, follow through the tutorial to learn how to create a full-blown Scrapy
project and join the community. Thanks for your interest!

2.2 Installation guide

2.2.1 Supported Python versions

Scrapy requires Python 3.5.2+, either the CPython implementation (default) or the PyPy 5.9+ implementation (see
Alternate Implementations).

2.2. Installation guide 7

https://www.sitemaps.org/index.html
https://scrapy.org/community/
https://docs.python.org/3/reference/introduction.html#implementations

Scrapy Documentation, Release 2.2.0

2.2.2 Installing Scrapy

If you’re using Anaconda or Miniconda, you can install the package from the conda-forge channel, which has up-to-
date packages for Linux, Windows and macOS.

To install Scrapy using conda, run:

’conda install -c¢ conda-forge scrapy

Alternatively, if you’re already familiar with installation of Python packages, you can install Scrapy and its dependen-
cies from PyPI with:

’ pip install Scrapy

Note that sometimes this may require solving compilation issues for some Scrapy dependencies depending on your
operating system, so be sure to check the Platform specific installation notes.

We strongly recommend that you install Scrapy in a dedicated virtualenv, to avoid conflicting with your system
packages.

For more detailed and platform specifics instructions, as well as troubleshooting information, read on.

Things that are good to know

Scrapy is written in pure Python and depends on a few key Python packages (among others):
= [xml, an efficient XML and HTML parser
= parsel, an HTML/XML data extraction library written on top of 1xml,
= w3lib, a multi-purpose helper for dealing with URLs and web page encodings
= twisted, an asynchronous networking framework
= cryptography and pyOpenSSL, to deal with various network-level security needs
The minimal versions which Scrapy is tested against are:
= Twisted 14.0
= Ixml 3.4
= pyOpenSSL 0.14

Scrapy may work with older versions of these packages but it is not guaranteed it will continue working because it’s
not being tested against them.

Some of these packages themselves depends on non-Python packages that might require additional installation steps
depending on your platform. Please check platform-specific guides below.

In case of any trouble related to these dependencies, please refer to their respective installation instructions:
= Ixml installation

= cryptography installation

8 Capitulo 2. First steps

https://docs.anaconda.com/anaconda/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda-forge.org/
https://lxml.de/index.html
https://pypi.org/project/parsel/
https://pypi.org/project/w3lib/
https://twistedmatrix.com/trac/
https://cryptography.io/en/latest/
https://pypi.org/project/pyOpenSSL/
https://lxml.de/installation.html
https://cryptography.io/en/latest/installation/

Scrapy Documentation, Release 2.2.0

Using a virtual environment (recommended)

TL;DR: We recommend installing Scrapy inside a virtual environment on all platforms.

Python packages can be installed either globally (a.k.a system wide), or in user-space. We do not recommend installing
Scrapy system wide.

Instead, we recommend that you install Scrapy within a so-called «virtual environment» (venv). Virtual environments
allow you to not conflict with already-installed Python system packages (which could break some of your system tools
and scripts), and still install packages normally with pip (without sudo and the likes).

See Virtual Environments and Packages on how to create your virtual environment.

Once you have created a virtual environment, you can install Scrapy inside it with pip, just like any other Python
package. (See platform-specific guides below for non-Python dependencies that you may need to install beforehand).

2.2.3 Platform specific installation notes

Windows

Though it’s possible to install Scrapy on Windows using pip, we recommend you to install Anaconda or Miniconda
and use the package from the conda-forge channel, which will avoid most installation issues.

Once you’ve installed Anaconda or Miniconda, install Scrapy with:

conda install -c conda-forge scrapy

Ubuntu 14.04 or above

Scrapy is currently tested with recent-enough versions of Ixml, twisted and pyOpenSSL, and is compatible with recent
Ubuntu distributions. But it should support older versions of Ubuntu too, like Ubuntu 14.04, albeit with potential issues
with TLS connections.

Don’t use the python—-scrapy package provided by Ubuntu, they are typically too old and slow to catch up with
latest Scrapy.

To install Scrapy on Ubuntu (or Ubuntu-based) systems, you need to install these dependencies:

sudo apt-get install python3 python3-dev python3-pip libxml2-dev libxsltl-dev zliblg-
—dev libffi-dev libssl-dev

» python3-dev, z1iblg-dev, libxml2-dev and 1ibxslt1l-dev are required for 1xml
» libssl-devand 1ibffi-dev are required for cryptography

Inside a virtualenv, you can install Scrapy with pip after that:

pip install scrapy

Note: The same non-Python dependencies can be used to install Scrapy in Debian Jessie (8.0) and above.

2.2. Installation guide 9

https://docs.python.org/3/library/venv.html#module-venv
https://docs.python.org/3/tutorial/venv.html#tut-venv
https://docs.anaconda.com/anaconda/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda-forge.org/
https://docs.anaconda.com/anaconda/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

Scrapy Documentation, Release 2.2.0

macOS

Building Scrapy’s dependencies requires the presence of a C compiler and development headers. On macOS this is
typically provided by Apple’s Xcode development tools. To install the Xcode command line tools open a terminal
window and run:

xcode-select —-install

There’s a known issue that prevents pip from updating system packages. This has to be addressed to successfully
install Scrapy and its dependencies. Here are some proposed solutions:

= (Recommended) Don’t use system python, install a new, updated version that doesn’t conflict with the rest of
your system. Here’s how to do it using the homebrew package manager:

¢ Install homebrew following the instructions in https://brew.sh/

» Update your PATH variable to state that homebrew packages should be used before system packages
(Change .bashrcto .zshrc accordantly if you're using zsh as default shell):

’echo "export PATH=/usr/local/bin:/usr/local/sbin:$PATH" >> ~/.bashrc

* Reload .bashrc to ensure the changes have taken place:

’ source ~/.bashrc

¢ Install python:

’ brew install python

» Latest versions of python have pip bundled with them so you won’t need to install it separately. If this is
not the case, upgrade python:

’brew update; brew upgrade python

» (Optional) Install Scrapy inside a Python virtual environment.

This method is a workaround for the above macOS issue, but it’s an overall good practice for managing
dependencies and can complement the first method.

After any of these workarounds you should be able to install Scrapy:

pip install Scrapy

PyPy

We recommend using the latest PyPy version. The version tested is 5.9.0. For PyPy3, only Linux installation was
tested.

Most Scrapy dependencides now have binary wheels for CPython, but not for PyPy. This means that these dependecies
will be built during installation. On macOS, you are likely to face an issue with building Cryptography dependency,
solution to this problem is described here, that is to brew install openssl and then export the flags that this
command recommends (only needed when installing Scrapy). Installing on Linux has no special issues besides insta-
lling build dependencies. Installing Scrapy with PyPy on Windows is not tested.

You can check that Scrapy is installed correctly by running scrapy bench. If this command gives errors such
as TypeError: ... got 2 unexpected keyword arguments, this means that setuptools was unable to
pick up one PyPy-specific dependency. To fix this issue, run pip install 'PyPyDispatcher>=2.1.0".

10 Capitulo 2. First steps

https://github.com/pypa/pip/issues/2468
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://www.zsh.org/
https://github.com/pyca/cryptography/issues/2692#issuecomment-272773481

Scrapy Documentation, Release 2.2.0

2.2.4 Troubleshooting

AttributeError: “module” object has no attribute “OP_NO_TLSv1_1”

After you install or upgrade Scrapy, Twisted or pyOpenSSL, you may get an exception with the following traceback:

oo]

File "[...]/site-packages/twisted/protocols/tls.py", line 63, in <module>
from twisted.internet._sslverify import _setAcceptableProtocols
File "[...]/site-packages/twisted/internet/_sslverify.py", line 38, in <module>

TLSVersion.TLSv1l_1: SSL.OP_NO_TLSv1_1,
AttributeError: 'module' object has no attribute 'OP_NO_TLSv1_1"

The reason you get this exception is that your system or virtual environment has a version of pyOpenSSL that your
version of Twisted does not support.

To install a version of pyOpenSSL that your version of Twisted supports, reinstall Twisted with the t 1s extra option:

’ pip install twisted[tls]

For details, see Issue #2473.

2.3 Scrapy Tutorial

In this tutorial, we’ll assume that Scrapy is already installed on your system. If that’s not the case, see Installation
guide.

We are going to scrape quotes.toscrape.com, a website that lists quotes from famous authors.
This tutorial will walk you through these tasks:

1. Creating a new Scrapy project

2. Writing a spider to crawl a site and extract data

3. Exporting the scraped data using the command line

4. Changing spider to recursively follow links

5. Using spider arguments

Scrapy is written in Python. If you’re new to the language you might want to start by getting an idea of what the
language is like, to get the most out of Scrapy.

If you're already familiar with other languages, and want to learn Python quickly, the Python Tutorial is a good
resource.

If you’re new to programming and want to start with Python, the following books may be useful to you:
= Automate the Boring Stuff With Python
= How To Think Like a Computer Scientist
= Learn Python 3 The Hard Way

You can also take a look at this list of Python resources for non-programmers, as well as the suggested resources in
the learnpython-subreddit.

2.3. Scrapy Tutorial 11

https://github.com/scrapy/scrapy/issues/2473
http://quotes.toscrape.com/
https://www.python.org/

Scrapy Documentation, Release 2.2.0

2.3.1 Creating a project

Before you start scraping, you will have to set up a new Scrapy project. Enter a directory where you’d like to store
your code and run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/

scrapy.cfg # deploy configuration file

tutorial/ # project's Python module, you'll import your code from here
__init__.py
items.py # project items definition file
middlewares.py # project middlewares file
pipelines.py # project pipelines file
settings.py # project settings file
spiders/ # a directory where you'll later put your spiders

__init___ .py

2.3.2 Our first Spider

Spiders are classes that you define and that Scrapy uses to scrape information from a website (or a group of websites).
They must subclass Spider and define the initial requests to make, optionally how to follow links in the pages, and
how to parse the downloaded page content to extract data.

This is the code for our first Spider. Save it in a file named quotes_spider.py under the tutorial/spiders
directory in your project:

import scrapy

class QuotesSpider (scrapy.Spider):
name = "quotes"

def start_requests(self):
urls = [
'http://quotes.toscrape.com/page/1/",
'http://quotes.toscrape.com/page/2/",

for url in urls:
yield scrapy.Request (url=url, callback=self.parse)

def parse(self, response):
page = response.url.split("/") [-2]
filename = 'quotes-%s.html' % page
with open(filename, 'wb') as f:
f.write (response.body

)
self.log('Saved file ' % filename)

As you can see, our Spider subclasses scrapy. Spider and defines some attributes and methods:

12 Capitulo 2. First steps

Scrapy Documentation, Release 2.2.0

= name: identifies the Spider. It must be unique within a project, that is, you can’t set the same name for different
Spiders.

» start_requests ():mustreturn an iterable of Requests (you can return a list of requests or write a generator
function) which the Spider will begin to crawl from. Subsequent requests will be generated successively from
these initial requests.

= parse (): a method that will be called to handle the response downloaded for each of the requests made.
The response parameter is an instance of TextResponse that holds the page content and has further helpful
methods to handle it.

The parse () method usually parses the response, extracting the scraped data as dicts and also finding new
URLSs to follow and creating new requests (Request) from them.

How to run our spider

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl quotes

This command runs the spider with name quotes that we’ve just added, that will send some requests for the
quotes.toscrape.com domain. You will get an output similar to this:

(omitted for brevity)
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Spider opened
2016-12-16 21:24:05 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/
—min), scraped 0 items (at 0 items/min)
2016-12-16 21:24:05 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.
—0.0.1:6023
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (404) <GET http://quotes.
—toscrape.com/robots.txt> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
—toscrape.com/page/1l/> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
—toscrape.com/page/2/> (referer: None)
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-1.html
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes—2.html
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Closing spider (finished)

Now, check the files in the current directory. You should notice that two new files have been created: quotes-1.html
and quotes-2.html, with the content for the respective URLSs, as our parse method instructs.

Note: If you are wondering why we haven’t parsed the HTML yet, hold on, we will cover that soon.

2.3. Scrapy Tutorial 13

Scrapy Documentation, Release 2.2.0

What just happened under the hood?

Scrapy schedules the scrapy.Request objects returned by the start_requests method of the Spider. Upon
receiving a response for each one, it instantiates Response objects and calls the callback method associated with the
request (in this case, the parse method) passing the response as argument.

A shortcut to the start_requests method

Instead of implementing a start_requests () method that generates scrapy.Request objects from URLs,
you can just define a start_urls class attribute with a list of URLs. This list will then be used by the default
implementation of start_requests () to create the initial requests for your spider:

import scrapy

class QuotesSpider (scrapy.Spider) :
name = "quotes"
start_urls = [
'http://quotes.toscrape.com/page/1/"',
'http://quotes.toscrape.com/page/2/"',

def parse(self, response):
page = response.url.split ("/")[-2]
filename = 'quotes-%s.html' % page
with open(filename, 'wb') as f:

f.write (response.body)

The parse () method will be called to handle each of the requests for those URLs, even though we haven’t explicitly
told Scrapy to do so. This happens because parse () is Scrapy’s default callback method, which is called for requests
without an explicitly assigned callback.

Extracting data

The best way to learn how to extract data with Scrapy is trying selectors using the Scrapy shell. Run:

scrapy shell 'http://quotes.toscrape.com/page/1/"'

Note: Remember to always enclose urls in quotes when running Scrapy shell from command-line, otherwise urls
containing arguments (i.e. & character) will not work.

On Windows, use double quotes instead:

scrapy shell "http://quotes.toscrape.com/page/1/"

You will see something like:

[... Scrapy log here ...]

2016-09-19 12:09:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://quotes.
—toscrape.com/page/1l/> (referer: None)

[s] Available Scrapy objects:

[s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)
[s] crawler <scrapy.crawler.Crawler object at 0x7fa91d888c90>

(continues on next page)

14 Capitulo 2. First steps

Scrapy Documentation, Release 2.2.0

(continued from previous page)

[s] item {}

[s] request <GET http://quotes.toscrape.com/page/1/>

[s] response <200 http://quotes.toscrape.com/page/1/>

[s] settings <scrapy.settings.Settings object at 0x7fa91d888cl0>
[s] spider <DefaultSpider 'default' at 0x7fa91c8af990>

[s] Useful shortcuts:

[s] shelp () Shell help (print this help)

[s] fetch(reg_or_url) Fetch request (or URL) and update local objects
[s] view (response) View response in a browser

Using the shell, you can try selecting elements using CSS with the response object:

>>> response.css('title')
[<Selector xpath='descendant-or-self::title' data='<title>Quotes to Scrape</title>'>]

The result of running response.css ('title"') is alist-like object called SelectorList, which represents a
list of Selector objects that wrap around XML/HTML elements and allow you to run further queries to fine-grain
the selection or extract the data.

To extract the text from the title above, you can do:

>>> response.css('title::text') .getall ()
['Quotes to Scrape']

There are two things to note here: one is that we’ve added : : text to the CSS query, to mean we want to select
only the text elements directly inside <t it 1e> element. If we don’t specify : : text, we’d get the full title element,
including its tags:

>>> response.css('title').getall()
['<title>Quotes to Scrape</title>']

The other thing is that the result of calling .getall () is a list: it is possible that a selector returns more than one
result, so we extract them all. When you know you just want the first result, as in this case, you can do:

>>> response.css('title::text') .get ()
'Quotes to Scrape'

As an alternative, you could’ve written:

>>> response.css('title::text") [0].get ()
'Quotes to Scrape'

However, using . get () directly ona SelectorList instance avoids an IndexError and returns None when it
doesn’t find any element matching the selection.

There’s a lesson here: for most scraping code, you want it to be resilient to errors due to things not being found on a
page, so that even if some parts fail to be scraped, you can at least get some data.

Besides the getall () and get () methods, you can also use the re () method to extract using regular expressions:

>>> response.css('title::text') .re(r'Quotes.*")
['Quotes to Scrape']

>>> response.css('title::text').re(r'Q\wt+')
["Quotes']

>>> response.css('title::text').re(r' (\wt+) to (\w+)"')

['Quotes', 'Scrape']

2.3. Scrapy Tutorial 15

https://www.w3.org/TR/selectors
https://docs.python.org/3/library/re.html

Scrapy Documentation, Release 2.2.0

In order to find the proper CSS selectors to use, you might find useful opening the response page from the shell in your
web browser using view (response). You can use your browser’s developer tools to inspect the HTML and come
up with a selector (see Using your browser’s Developer Tools for scraping).

Selector Gadget is also a nice tool to quickly find CSS selector for visually selected elements, which works in many
browsers.

XPath: a brief intro

Besides CSS, Scrapy selectors also support using XPath expressions:

>>> response.xpath('//title")

[<Selector xpath='//title' data='<title>Quotes to Scrape</title>'>]
>>> response.xpath('//title/text ()") .get ()

'Quotes to Scrape'

XPath expressions are very powerful, and are the foundation of Scrapy Selectors. In fact, CSS selectors are converted
to XPath under-the-hood. You can see that if you read closely the text representation of the selector objects in the shell.

While perhaps not as popular as CSS selectors, XPath expressions offer more power because besides navigating the
structure, it can also look at the content. Using XPath, you’re able to select things like: select the link that contains the
text «Next Page». This makes XPath very fitting to the task of scraping, and we encourage you to learn XPath even if
you already know how to construct CSS selectors, it will make scraping much easier.

We won’t cover much of XPath here, but you can read more about using XPath with Scrapy Selectors here. To learn
more about XPath, we recommend this tutorial to learn XPath through examples, and this tutorial to learn «how to
think in XPath».

Extracting quotes and authors

Now that you know a bit about selection and extraction, let’s complete our spider by writing the code to extract the
quotes from the web page.

Each quote in http://quotes.toscrape.com is represented by HTML elements that look like this:

<div class="quote">
“The world as we have created it is a process of our
thinking. It cannot be changed without changing our thinking.”

by <small class="author">Albert Einstein</small>
 (about)

<div class="tags">
Tags:
change
deep-thoughts
thinking
world
</div>
</div>

Let’s open up scrapy shell and play a bit to find out how to extract the data we want:

$ scrapy shell 'http://quotes.toscrape.com'

We get a list of selectors for the quote HTML elements with:

16 Capitulo 2. First steps

https://selectorgadget.com/
https://www.w3.org/TR/selectors
https://www.w3.org/TR/xpath/all/
http://zvon.org/comp/r/tut-XPath_1.html
http://plasmasturm.org/log/xpath101/
http://plasmasturm.org/log/xpath101/
http://quotes.toscrape.com

Scrapy Documentation, Release 2.2.0

>>> response.css ("div.quote™)

[<Selector xpath="descendant-or-self::div[@class and contains (concat (' ', normalize-
—space (@class), ' '), ' quote ')]" data='<div class="quote" itemscope itemtype...'>,
<Selector xpath="descendant-or-self::div[@class and contains(concat (' ', normalize-
—space (@class), ' '), ' quote ')]" data='<div class="quote" itemscope itemtype...'>,

-]

Each of the selectors returned by the query above allows us to run further queries over their sub-elements. Let’s assign
the first selector to a variable, so that we can run our CSS selectors directly on a particular quote:

>>> quote = response.css("div.quote") [0]

Now, let’s extract text, author and the tags from that quote using the quote object we just created:

>>> text = quote.css("span.text::text") .get ()

>>> text

'“The world as we have created it is a process of our thinking. It cannot be changed,
—without changing our thinking.”'

>>> author = quote.css("small.author::text") .get ()

>>> author

'Albert Einstein'

Given that the tags are a list of strings, we can use the .getall () method to get all of them:

>>> tags = quote.css("div.tags a.tag::text") .getall()
>>> tags
['change', 'deep-thoughts', 'thinking', 'world']

Having figured out how to extract each bit, we can now iterate over all the quotes elements and put them together into
a Python dictionary:

>>> for quote in response.css("div.quote"):

text = quote.css("span.text::text") .get ()

author = quote.css("small.author::text") .get ()

tags = quote.css("div.tags a.tag::text").getall()
ce print (dict (text=text, author=author, tags=tags))
{'text': '"“The world as we have created it is a process of our thinking. It cannot be
—changed without changing our thinking.”', 'author': 'Albert Einstein', 'tags': [
—'change', 'deep-thoughts', 'thinking', 'world']}
{'text': '"“It is our choices, Harry, that show what we truly are, far more than our_
—abilities.”', 'author': 'J.K. Rowling', 'tags': ['abilities', 'choices']}

Extracting data in our spider
Let’s get back to our spider. Until now, it doesn’t extract any data in particular, just saves the whole HTML page to a
local file. Let’s integrate the extraction logic above into our spider.

A Scrapy spider typically generates many dictionaries containing the data extracted from the page. To do that, we use
the yield Python keyword in the callback, as you can see below:

import scrapy

class QuotesSpider (scrapy.Spider) :
name = "quotes"

(continues on next page)

2.3. Scrapy Tutorial 17

Scrapy Documentation, Release 2.2.0

(continued from previous page)

start_urls = [
'http://quotes.toscrape.com/page/1/",
'http://quotes.toscrape.com/page/2/",

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').get (),
'author': quote.css('small.author::text').get (),

'tags': quote.css('div.tags a.tag::text').getall(),

If you run this spider, it will output the extracted data with the log:

2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.
—toscrape.com/page/1/>

{'tags': ['life', 'love'], 'author': 'André Gide', 'text': '“It is better to be hated,
—for what you are than to be loved for what you are not.”'}

2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 http://quotes.
—toscrape.com/page/1/>

{'tags': ['edison', 'failure', 'inspirational', 'paraphrased'], 'author': 'Thomas A.
—Edison', 'text': "“I have not failed. I've just found 10,000 ways that won't work.”

. u}

2.3.3 Storing the scraped data

The simplest way to store the scraped data is by using Feed exports, with the following command:

scrapy crawl quotes —-o quotes. json

That will generate an quotes . json file containing all scraped items, serialized in JSON.

For historic reasons, Scrapy appends to a given file instead of overwriting its contents. If you run this command twice
without removing the file before the second time, you’ll end up with a broken JSON file.

You can also use other formats, like JSON Lines:

scrapy crawl quotes -o quotes.jl

The JSON Lines format is useful because it’s stream-like, you can easily append new records to it. It doesn’t have the
same problem of JSON when you run twice. Also, as each record is a separate line, you can process big files without
having to fit everything in memory, there are tools like JQ to help doing that at the command-line.

In small projects (like the one in this tutorial), that should be enough. However, if you want to perform more complex
things with the scraped items, you can write an /tem Pipeline. A placeholder file for Item Pipelines has been set up
for you when the project is created, in tutorial/pipelines.py. Though you don’t need to implement any item
pipelines if you just want to store the scraped items.

18 Capitulo 2. First steps

https://en.wikipedia.org/wiki/JSON
http://jsonlines.org
http://jsonlines.org
https://stedolan.github.io/jq

Scrapy Documentation, Release 2.2.0

2.3.4 Following links

Let’s say, instead of just scraping the stuff from the first two pages from http://quotes.toscrape.com, you want quotes
from all the pages in the website.

Now that you know how to extract data from pages, let’s see how to follow links from them.

First thing is to extract the link to the page we want to follow. Examining our page, we can see there is a link to the
next page with the following markup:

<ul class="pager">
<1li class="next">
Next →
</1li>

We can try extracting it in the shell:

>>> response.css('li.next a').get ()
'Next —"'

This gets the anchor element, but we want the attribute hre £. For that, Scrapy supports a CSS extension that lets you
select the attribute contents, like this:

>>> response.css('li.next a::attr(href) ') .get ()
' /page/2/"

There is also an at t rib property available (see Selecting element attributes for more):

>>> response.css('li.next a').attrib['href']
'/page/2/"

Let’s see now our spider modified to recursively follow the link to the next page, extracting data from it:

import scrapy

class QuotesSpider (scrapy.Spider) :
name = "quotes"
start_urls = [
'http://quotes.toscrape.com/page/1/"',

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').get (),
'author': quote.css('small.author::text') .get (),

'tags': quote.css('div.tags a.tag::text').getall(),

next_page = response.css('li.next a::attr (href)').get ()
if next_page is not None:

next_page = response.urljoin (next_page)

yield scrapy.Request (next_page, callback=self.parse)

Now, after extracting the data, the parse () method looks for the link to the next page, builds a full absolute URL
using the url join () method (since the links can be relative) and yields a new request to the next page, registering
itself as callback to handle the data extraction for the next page and to keep the crawling going through all the pages.

2.3. Scrapy Tutorial 19

http://quotes.toscrape.com

Scrapy Documentation, Release 2.2.0

What you see here is Scrapy’s mechanism of following links: when you yield a Request in a callback method, Scrapy
will schedule that request to be sent and register a callback method to be executed when that request finishes.

Using this, you can build complex crawlers that follow links according to rules you define, and extract different kinds
of data depending on the page it’s visiting.

In our example, it creates a sort of loop, following all the links to the next page until it doesn’t find one — handy for
crawling blogs, forums and other sites with pagination.

A shortcut for creating Requests

As a shortcut for creating Request objects you can use response. follow:

import scrapy

class QuotesSpider (scrapy.Spider):
name = "quotes"
start_urls = [
'http://quotes.toscrape.com/page/1/",

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').get (),
'author': quote.css('span small::text').get (),

'tags': quote.css('div.tags a.tag::text').getall(),

next_page = response.css('li.next a::attr(href)').get ()
if next_page is not None:
yield response.follow(next_page, callback=self.parse)

Unlike scrapy.Request, response.follow supports relative URLs directly - no need to call urljoin. Note that
response.follow just returns a Request instance; you still have to yield this Request.

You can also pass a selector to response.follow instead of a string; this selector should extract necessary attri-
butes:

for href in response.css('ul.pager a::attr(href)'):
yield response.follow(href, callback=self.parse)

For <a> elements there is a shortcut: response. follow uses their href attribute automatically. So the code can be
shortened further:

for a in response.css('ul.pager a'):
yield response.follow(a, callback=self.parse)

To create multiple requests from an iterable, you can use response. follow_all instead:

anchors = response.css('ul.pager a')
yield from response.follow_all (anchors, callback=self.parse)

or, shortening it further:

yield from response.follow_all (css='ul.pager a', callback=self.parse)

20 Capitulo 2. First steps

Scrapy Documentation, Release 2.2.0

More examples and patterns

Here is another spider that illustrates callbacks and following links, this time for scraping author information:

import scrapy
class AuthorSpider (scrapy.Spider) :
name = 'author'
start_urls = ['http://quotes.toscrape.com/"']
def parse(self, response):
author_page_links = response.css('.author + a')

yield from response.follow_all (author_page_links, self.parse_author)

pagination_links = response.css('li.next a')
yield from response.follow_all (pagination_links, self.parse)

def parse_author(self, response):
def extract_with_css(query) :

return response.css (query) .get (default="'") .strip()

yield {
'name': extract_with_css('h3.author-title::text'),
'birthdate': extract_with_css('.author-born-date::text'),
'bio': extract_with_css('.author-description::text'),

This spider will start from the main page, it will follow all the links to the authors pages calling the parse_author
callback for each of them, and also the pagination links with the parse callback as we saw before.

Here we’re passing callbacks to response. follow_all as positional arguments to make the code shorter; it also
works for Request.

The parse_author callback defines a helper function to extract and cleanup the data from a CSS query and yields
the Python dict with the author data.

Another interesting thing this spider demonstrates is that, even if there are many quotes from the same author, we don’t
need to worry about visiting the same author page multiple times. By default, Scrapy filters out duplicated requests to
URLSs already visited, avoiding the problem of hitting servers too much because of a programming mistake. This can
be configured by the setting DUPEFTILTER _CLASS.

Hopefully by now you have a good understanding of how to use the mechanism of following links and callbacks with
Scrapy.

As yet another example spider that leverages the mechanism of following links, check out the CrawlSpider class
for a generic spider that implements a small rules engine that you can use to write your crawlers on top of it.

Also, a common pattern is to build an item with data from more than one page, using a trick to pass additional data to
the callbacks.

2.3. Scrapy Tutorial 21

Scrapy Documentation, Release 2.2.0

2.3.5 Using spider arguments

You can provide command line arguments to your spiders by using the —a option when running them:

scrapy crawl quotes —-o quotes-humor.json -a tag=humor

These arguments are passed to the Spider’s___init___ method and become spider attributes by default.

In this example, the value provided for the t ag argument will be available via self.tag. You can use this to make
your spider fetch only quotes with a specific tag, building the URL based on the argument:

import scrapy

class QuotesSpider (scrapy.Spider) :
name = "quotes"

def start_requests(self):
url 'http://quotes.toscrape.com/"
tag = getattr(self, 'tag', None)
if tag is not None:
url = url + 'tag/' + tag
yield scrapy.Request (url, self.parse)

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').get (),
'author': quote.css('small.author::text') .get (),
}
next_page = response.css('li.next a::attr(href)').get ()

if next_page is not None:
yield response.follow(next_page, self.parse)

If you pass the tag=humor argument to this spider, you’ll notice that it will only visit URLs from the humor tag,
such as http://quotes.toscrape.com/tag/humor.

You can learn more about handling spider arguments here.

2.3.6 Next steps

This tutorial covered only the basics of Scrapy, but there’s a lot of other features not mentioned here. Check the What
else? section in Scrapy at a glance chapter for a quick overview of the most important ones.

You can continue from the section Basic concepts to know more about the command-line tool, spiders, selectors and
other things the tutorial hasn’t covered like modeling the scraped data. If you prefer to play with an example project,
check the Examples section.

22 Capitulo 2. First steps

Scrapy Documentation, Release 2.2.0

2.4 Examples

The best way to learn is with examples, and Scrapy is no exception. For this reason, there is an example Scrapy
project named quotesbot, that you can use to play and learn more about Scrapy. It contains two spiders for http:
//quotes.toscrape.com, one using CSS selectors and another one using XPath expressions.

The quotesbot project is available at: https://github.com/scrapy/quotesbot. You can find more information about it in
the project’s README.

If you’re familiar with git, you can checkout the code. Otherwise you can download the project as a zip file by clicking
here.

Scrapy at a glance Understand what Scrapy is and how it can help you.
Installation guide Get Scrapy installed on your computer.
Scrapy Tutorial Write your first Scrapy project.

Examples Learn more by playing with a pre-made Scrapy project.

2.4. Examples 23

https://github.com/scrapy/quotesbot
http://quotes.toscrape.com
http://quotes.toscrape.com
https://github.com/scrapy/quotesbot
https://github.com/scrapy/quotesbot
https://github.com/scrapy/quotesbot/archive/master.zip

Scrapy Documentation, Release 2.2.0

24 Capitulo 2. First steps

CAPITULO 3

Basic concepts

3.1 Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred here as the «Scrapy tool» to differentiate
it from the sub-commands, which we just call «commands» or «Scrapy commands».

The Scrapy tool provides several commands, for multiple purposes, and each one accepts a different set of arguments
and options.

(The scrapy deploy command has been removed in 1.0 in favor of the standalone scrapyd-deploy. See
Deploying your project.)

3.1.1 Configuration settings

Scrapy will look for configuration parameters in ini-style scrapy . cfg files in standard locations:
1. /etc/scrapy.cfgorc:\scrapy\scrapy.cfg (system-wide),

2. ~/.config/scrapy.cfg ($XDG_CONFIG_HOME) and ~/.scrapy.cfg (SHOME) for global (user-
wide) settings, and

3. scrapy.cfg inside a Scrapy project’s root (see next section).

Settings from these files are merged in the listed order of preference: user-defined values have higher priority than
system-wide defaults and project-wide settings will override all others, when defined.

Scrapy also understands, and can be configured through, a number of environment variables. Currently these are:
= SCRAPY_SETTINGS_MODULE (see Designating the settings)
= SCRAPY_PROJECT (see Sharing the root directory between projects)

= SCRAPY_PYTHON_SHELL (see Scrapy shell)

25

https://scrapyd.readthedocs.io/en/latest/deploy.html

Scrapy Documentation, Release 2.2.0

3.1.2 Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first understand the directory structure of a
Scrapy project.

Though it can be modified, all Scrapy projects have the same file structure by default, similar to this:

scrapy.cfg
myproject/
__init__ .py
items.py
middlewares.py
pipelines.py
settings.py
spiders/
__init_ .py
spiderl.py
spider2.py

The directory where the scrapy . cfqg file resides is known as the project root directory. That file contains the name
of the python module that defines the project settings. Here is an example:

[settings]
default = myproject.settings

3.1.3 Sharing the root directory between projects
A project root directory, the one that contains the scrapy.cfg, may be shared by multiple Scrapy projects, each
with its own settings module.

In that case, you must define one or more aliases for those settings modules under [settings] in your scrapy.
cfqfile:

[settings]

default = myprojectl.settings
projectl = myprojectl.settings
project2 = myproject2.settings

By default, the scrapy command-line tool will use the de fault settings. Use the SCRAPY_PROJECT environment
variable to specify a different project for scrapy to use:

$ scrapy settings --get BOT_NAME
Project 1 Bot
$ export SCRAPY_PROJECT=project2
$ scrapy settings -—-get BOT_NAME
Project 2 Bot

26 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

3.1.4 Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print some usage help and the available
commands:

Scrapy X.Y - no active project

Usage:
scrapy <command> [options] [args]

Available commands:

crawl Run a spider

fetch Fetch a URL using the Scrapy downloader
[...]

The first line will print the currently active project if you’re inside a Scrapy project. In this example it was run from
outside a project. If run from inside a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
scrapy <command> [options] [args]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy project:

scrapy startproject myproject [project_dir]

That will create a Scrapy project under the project_dir directory. If project_dir wasn’t specified,
project_dir will be the same as mypro ject.

Next, you go inside the new project directory:

cd project_dir

And you’re ready to use the scrapy command to manage and control your project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy project. See the commands reference below
for more information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours when running them from inside
projects. For example, the fetch command will use spider-overridden behaviours (such as the user_agent attri-
bute to override the user-agent) if the url being fetched is associated with some specific spider. This is intentional, as
the fetch command is meant to be used to check how spiders are downloading pages.

3.1. Command line tool 27

Scrapy Documentation, Release 2.2.0

3.1.5 Available tool commands

This section contains a list of the available built-in commands with a description and some usage examples. Remember,
you can always get more info about each command by running:

’scrapy <command> -h

And you can see all available commands with:

’scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy project (Project-specific commands) and
those that also work without an active Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overridden settings).

Global commands:

" startproject

" genspider

m settings

» runspider

m shell

s fetch

" view

" version
Project-only commands:

m crawl

m check

m]ist

m edit

m parse

= bench

startproject

» Syntax: scrapy startproject <project_name> [project_dir]
= Requires project: no

Creates a new Scrapy project named project_name, under the project_dir directory. If project_dir
wasn’t specified, project_dir will be the same as project_name.

Usage example:

$ scrapy startproject myproject

28 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

genspider

» Syntax: scrapy genspider [-t template] <name> <domain>
= Requires project: no

Create a new spider in the current folder or in the current project’s spiders folder, if called from inside a project.
The <name> parameter is set as the spider’s name, while <domain> is used to generate the allowed_domains
and start_urls spider’s attributes.

Usage example:

$ scrapy genspider -1
Available templates:
basic
crawl
csvfeed
xmlfeed

$ scrapy genspider example example.com
Created spider 'example' using template 'basic'

$ scrapy genspider -t crawl scrapyorg scrapy.org
Created spider 'scrapyorg' using template 'crawl'

This is just a convenience shortcut command for creating spiders based on pre-defined templates, but certainly not the
only way to create spiders. You can just create the spider source code files yourself, instead of using this command.

crawl

» Syntax: scrapy crawl <spider>
= Requires project: yes
Start crawling using a spider.

Usage examples:

$ scrapy crawl myspider
[... myspider starts crawling ...]

check

» Syntax: scrapy check [-1] <spider>
= Requires project: yes
Run contract checks.

Usage examples:

$ scrapy check -1
first_spider

* parse

* parse_item
second_spider

* parse

* parse_item

(continues on next page)

3.1. Command line tool 29

Scrapy Documentation, Release 2.2.0

(continued from previous page)

$ scrapy check
[FAILED] first_spider:parse_item
>>> 'RetailPricex' field is missing

[FAILED] first_spider:parse
>>> Returned 92 requests, expected 0..4

list

= Syntax: scrapy list
= Requires project: yes
List all available spiders in the current project. The output is one spider per line.

Usage example:

$ scrapy list
spiderl
spider?2

edit

» Syntax: scrapy edit <spider>
= Requires project: yes
Edit the given spider using the editor defined in the EDITOR environment variable or (if unset) the EDI TOR setting.

This command is provided only as a convenience shortcut for the most common case, the developer is of course free
to choose any tool or IDE to write and debug spiders.

Usage example:

$ scrapy edit spiderl

fetch

= Syntax: scrapy fetch <url>
= Requires project: no
Downloads the given URL using the Scrapy downloader and writes the contents to standard output.

The interesting thing about this command is that it fetches the page how the spider would download it. For example,
if the spider has a USER_AGENT attribute which overrides the User Agent, it will use that one.

So this command can be used to «see» how your spider would fetch a certain page.

If used outside a project, no particular per-spider behaviour would be applied and it will just use the default Scrapy
downloader settings.

Supported options:
= ——spider=SPIDER: bypass spider autodetection and force use of specific spider

= ——headers: print the response’s HTTP headers instead of the response’s body

30 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

s ——no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

Usage examples:

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/

{'Accept-Ranges': ['bytes'],
'Age': ['1263 '1,
'"Connection': ['close 1,

'Content-Length': ['596'],
'Content-Type': ['text/html; charset=UTF-8'],

'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
'Etag': ['"573cl1-254-48c9c87349680""'],
'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
'Server': ['Apache/2.2.3 (CentOS) ']}

view

» Syntax: scrapy view <url>
= Requires project: no

Opens the given URL in a browser, as your Scrapy spider would «see» it. Sometimes spiders see pages differently
from regular users, so this can be used to check what the spider «sees» and confirm it’s what you expect.

Supported options:
= ——spider=SPIDER: bypass spider autodetection and force use of specific spider
s ——no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

» Syntax: scrapy shell [url]
= Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if no URL is given. Also supports UNIX-style local file
paths, either relative with . / or . . / prefixes or absolute file paths. See Scrapy shell for more info.

Supported options:
= ——spider=SPIDER: bypass spider autodetection and force use of specific spider
= —c code: evaluate the code in the shell, print the result and exit

» ——no-redirect: do not follow HTTP 3xx redirects (default is to follow them); this only affects the URL
you may pass as argument on the command line; once you are inside the shell, fetch (url) will still follow
HTTP redirects by default.

Usage example:

3.1. Command line tool 31

Scrapy Documentation, Release 2.2.0

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

$ scrapy shell --nolog http://www.example.com/ -c ' (response.status, response.url)'
(200, 'http://www.example.com/')

shell follows HTTP redirects by default

$ scrapy shell --nolog http://httpbin.org/redirect-to?url=http%$3A%2F%2Fexample.com%2F
——c '(response.status, response.url)'

(200, 'http://example.com/")

you can disable this with --no-redirect

(only for the URL passed as command line argument)

$ scrapy shell --no-redirect --nolog http://httpbin.org/redirect-to?url=http%3A%2F
—%2Fexample.com%2F -c ' (response.status, response.url)'

(302, 'http://httpbin.org/redirect-to?url=http%$3A%2F%2Fexample.com%2F")

parse

» Syntax: scrapy parse <url> [options]
= Requires project: yes

Fetches the given URL and parses it with the spider that handles it, using the method passed with the ——callback
option, or parse if not given.

Supported options:
= ——spider=SPIDER: bypass spider autodetection and force use of specific spider
= ——a NAME=VALUE: set spider argument (may be repeated)
= ——callback or —c: spider method to use as callback for parsing the response

= ——meta or —m: additional request meta that will be passed to the callback request. This must be a valid json
string. Example: —meta=""{«foo» : «bar»}”

» ——cbkwargs: additional keyword arguments that will be passed to the callback. This must be a valid json
string. Example: —cbkwargs="{«foo» : «bar»}”

» ——pipelines: process items through pipelines

» ——rulesor —r:use CrawlSpider rules to discover the callback (i.e. spider method) to use for parsing the
response

= ——noitems: don’t show scraped items

= ——nolinks: don’t show extracted links

= ——nocolour: avoid using pygments to colorize the output

= ——depth or —d: depth level for which the requests should be followed recursively (default: 1)
= ——verbose or —v: display information for each depth level

= ——output or —o: dump scraped items to a file

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]

(continues on next page)

32 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

(continued from previous page)

>>> STATUS DEPTH LEVEL 1 <<<

Scraped Items ——————————-————-—— -

[{'name': 'Example item',
'category': 'Furniture',
'length': '12 cm'}]
Requests ———————————— -
[]
settings

» Syntax: scrapy settings [options]
= Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll show the default Scrapy value for that setting.

Example usage:

$ scrapy settings -—-get BOT_NAME
scrapybot

$ scrapy settings -—-get DOWNLOAD_DELAY
0

runspider

» Syntax: scrapy runspider <spider_file.py>

= Requires project: no

Run a spider self-contained in a Python file, without having to create a project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

version

= Syntax: scrapy version [-V]

= Requires project: no

Prints the Scrapy version. If used with —v it also prints Python, Twisted and Platform info, which is useful for bug

reports.

3.1. Command line tool

33

Scrapy Documentation, Release 2.2.0

bench

New in version 0.17.
= Syntax: scrapy bench
= Requires project: no

Run a quick benchmark test. Benchmarking.

3.1.6 Custom project commands

You can also add your custom project commands by using the COMMANDS_MODULE setting. See the Scrapy com-
mands in scrapy/commands for examples on how to implement your commands.

COMMANDS_MODULE

Default: ' ' (empty string)

A module to use for looking up custom Scrapy commands. This is used to add custom commands for your Scrapy
project.

Example:

COMMANDS_MODULE = 'mybot.commands'

Register commands via setup.py entry points

Note: This is an experimental feature, use with caution.

You can also add Scrapy commands from an external library by adding a scrapy.commands section in the entry
points of the library setup . py file.

The following example adds my_ command command:

from setuptools import setup, find_packages

setup (name="scrapy-mymodule',
entry_points={
'scrapy.commands': [
'my_command=my_scrapy_module.commands :MyCommand',
1,
}I
)

34 Capitulo 3. Basic concepts

https://github.com/scrapy/scrapy/tree/master/scrapy/commands

Scrapy Documentation, Release 2.2.0

3.2 Spiders

Spiders are classes which define how a certain site (or a group of sites) will be scraped, including how to perform
the crawl (i.e. follow links) and how to extract structured data from their pages (i.e. scraping items). In other words,
Spiders are the place where you define the custom behaviour for crawling and parsing pages for a particular site (or,
in some cases, a group of sites).

For spiders, the scraping cycle goes through something like this:

1. You start by generating the initial Requests to crawl the first URLSs, and specify a callback function to be called
with the response downloaded from those requests.

The first requests to perform are obtained by calling the start_requests () method which (by default)
generates Request for the URLSs specified in the start_urls and the parse method as callback function
for the Requests.

2. In the callback function, you parse the response (web page) and return ifem objects, Request objects, or
an iterable of these objects. Those Requests will also contain a callback (maybe the same) and will then be
downloaded by Scrapy and then their response handled by the specified callback.

3. In callback functions, you parse the page contents, typically using Selectors (but you can also use BeautifulSoup,
Ixml or whatever mechanism you prefer) and generate items with the parsed data.

4. Finally, the items returned from the spider will be typically persisted to a database (in some /fem Pipeline) or
written to a file using Feed exports.

Even though this cycle applies (more or less) to any kind of spider, there are different kinds of default spiders bundled
into Scrapy for different purposes. We will talk about those types here.

3.2.1 scrapy.Spider

class scrapy.spiders.Spider
This is the simplest spider, and the one from which every other spider must inherit (including spiders that come
bundled with Scrapy, as well as spiders that you write yourself). It doesn’t provide any special functionality. It
just provides a default start_requests () implementation which sends requests from the start_urls
spider attribute and calls the spider’s method parse for each of the resulting responses.

name
A string which defines the name for this spider. The spider name is how the spider is located (and instan-
tiated) by Scrapy, so it must be unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute and it’s required.

If the spider scrapes a single domain, a common practice is to name the spider after the domain, with
or without the TLD. So, for example, a spider that crawls mywebsite.com would often be called
mywebsite.

allowed_domains
An optional list of strings containing domains that this spider is allowed to crawl. Requests for URLs
not belonging to the domain names specified in this list (or their subdomains) won’t be followed if
OffsiteMiddleware is enabled.

Let’s say your target url is https://www.example.com/1.html, then add 'example.com' to
the list.

start_urls
A list of URLs where the spider will begin to crawl from, when no particular URLs are specified. So, the
first pages downloaded will be those listed here. The subsequent Request will be generated successively
from data contained in the start URLs.

3.2. Spiders 35

https://en.wikipedia.org/wiki/Top-level_domain

Scrapy Documentation, Release 2.2.0

custom_settings
A dictionary of settings that will be overridden from the project wide configuration when running this
spider. It must be defined as a class attribute since the settings are updated before instantiation.

For a list of available built-in settings see: Built-in settings reference.

crawler
This attribute is set by the from crawler () class method after initializating the class, and links to the
Crawler object to which this spider instance is bound.

Crawlers encapsulate a lot of components in the project for their single entry access (such as extensions,
middlewares, signals managers, etc). See Crawler API to know more about them.

settings
Configuration for running this spider. This is a Settings instance, see the Sertings topic for a detailed
introduction on this subject.

logger
Python logger created with the Spider’s name. You can use it to send log messages through it as described
on Logging from Spiders.

from crawler (crawler, *args, **kwargs)
This is the class method used by Scrapy to create your spiders.

You probably won’t need to override this directly because the default implementation acts as a proxy to
the __init__ () method, calling it with the given arguments args and named arguments kwargs.

Nonetheless, this method sets the crawler and settings attributes in the new instance so they can be
accessed later inside the spider’s code.

Parameters
= crawler (Crawler instance) — crawler to which the spider will be bound
» args (list)—arguments passedtothe __init__ () method
» kwargs (dict)—keyword arguments passed tothe ___init__ () method

start_requests ()
This method must return an iterable with the first Requests to crawl for this spider. It is called by
Scrapy when the spider is opened for scraping. Scrapy calls it only once, so it is safe to implement
start_requests () as a generator.

The default implementation generates Request (url, dont_filter=True) for each url in
start_urls.

If you want to change the Requests used to start scraping a domain, this is the method to override. For
example, if you need to start by logging in using a POST request, you could do:

class MySpider (scrapy.Spider) :
name = 'myspider'

def start_requests(self):
return [scrapy.FormRequest ("http://www.example.com/login",
formdata={'user': 'Jjohn', 'pass': 'secret'}

callback=self.logged_in)]

def logged_in(self, response):
here you would extract links to follow and return Requests for
each of them, with another callback
pass

36 Capitulo 3. Basic concepts

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

parse (response)
This is the default callback used by Scrapy to process downloaded responses, when their requests don’t
specify a callback.

The parse method is in charge of processing the response and returning scraped data and/or more URLs
to follow. Other Requests callbacks have the same requirements as the Spider class.

This method, as well as any other Request callback, must return an iterable of Request and/or item
objects.

Parameters response (Response) — the response to parse

log (message[, level, component])
Wrapper that sends a log message through the Spider’s 1ogger, kept for backward compatibility. For
more information see Logging from Spiders.

closed (reason)
Called when the spider closes. This method provides a shortcut to signals.connect() for the
spider_closed signal.

Let’s see an example:

import scrapy

class MySpider (scrapy.Spider) :
name = 'example.com'

allowed_domains = ['example.com']

start_urls = [
'http://www.example.com/1.html"',
'http://www.example.com/2.html"',

'http://www.example.com/3.html',

def parse(self, response):
self.logger.info('A response from just arrived!', response.url)

Return multiple Requests and items from a single callback:

import scrapy

class MySpider (scrapy.Spider) :
name = 'example.com'
allowed_domains = ['example.com']
start_urls = [
'http://www.example.com/1.html"',
'http://www.example.com/2.html"',
'http://www.example.com/3.html"',

def parse(self, response):
for h3 in response.xpath('//h3").getall():
yield {"title": h3}

for href in response.xpath('//a/@href').getall () :
yield scrapy.Request (response.urljoin (href), self.parse)

Instead of start_urlisyoucanuse start_requests () directly; to give data more structure you can use Item
objects:

3.2. Spiders 37

Scrapy Documentation, Release 2.2.0

import scrapy
from myproject.items import MyItem

class MySpider (scrapy.Spider) :
name = 'example.com'
allowed_domains = ['example.com']

def start_requests(self):
yield scrapy.Request ('http://www.example.com/1l.html', self.parse)
yield scrapy.Request ('http://www.example.com/2.html', self.parse)
yield scrapy.Request ('http://www.example.com/3.html', self.parse)

def parse(self, response):
for h3 in response.xpath('//h3").getall():
yield MyItem(title=h3)

for href in response.xpath('//a/@href').getall () :
yield scrapy.Request (response.urljoin (href), self.parse)

3.2.2 Spider arguments

Spiders can receive arguments that modify their behaviour. Some common uses for spider arguments are to define the
start URLS or to restrict the crawl to certain sections of the site, but they can be used to configure any functionality of
the spider.

Spider arguments are passed through the crawl command using the —a option. For example:

scrapy crawl myspider -a category=electronics

Spiders can access arguments in their __init__ methods:

import scrapy

class MySpider (scrapy.Spider) :

name = 'myspider'

def _ _init__ (self, category=None, =xargs, =**kwargs):
super (MySpider, self).__init__ (xargs, =*xkwargs)
self.start_urls = ['http://www.example.com/categories/%s' % category]
#

The default __inir__ method will take any spider arguments and copy them to the spider as attributes. The above
example can also be written as follows:

import scrapy

class MySpider (scrapy.Spider) :
name = 'myspider'

def start_requests(self):
yield scrapy.Request ('http://www.example.com/categories/¢s' % self.category)

Keep in mind that spider arguments are only strings. The spider will not do any parsing on its own. If you were to
set the start_urls attribute from the command line, you would have to parse it on your own into a list using
something like ast .literal eval () or json.loads () and then set it as an attribute. Otherwise, you would

38 Capitulo 3. Basic concepts

https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/json.html#json.loads

Scrapy Documentation, Release 2.2.0

cause iteration over a start_urls string (a very common python pitfall) resulting in each character being seen as a
separate url.

A valid use case is to set the http auth credentials used by HttpAuthMiddleware or the user agent used by
UserAgentMiddleware:

scrapy crawl myspider —a http_user=myuser —-a http_pass=mypassword —-a user_agent=mybot

Spider arguments can also be passed through the Scrapyd schedule. json API. See Scrapyd documentation.

3.2.3 Generic Spiders

Scrapy comes with some useful generic spiders that you can use to subclass your spiders from. Their aim is to provide
convenient functionality for a few common scraping cases, like following all links on a site based on certain rules,
crawling from Sitemaps, or parsing an XML/CSV feed.

For the examples used in the following spiders, we’ll assume you have a project with a Test Item declared in a
myproject .items module:

import scrapy

class TestItem(scrapy.Item):
id = scrapy.Field()

name = scrapy.Field()
description = scrapy.Field()
CrawlSpider

class scrapy.spiders.CrawlSpider
This is the most commonly used spider for crawling regular websites, as it provides a convenient mechanism for
following links by defining a set of rules. It may not be the best suited for your particular web sites or project,
but it’s generic enough for several cases, so you can start from it and override it as needed for more custom
functionality, or just implement your own spider.

Apart from the attributes inherited from Spider (that you must specify), this class supports a new attribute:

rules
Which is a list of one (or more) Rule objects. Each Rule defines a certain behaviour for crawling the
site. Rules objects are described below. If multiple rules match the same link, the first one will be used,
according to the order they’re defined in this attribute.

This spider also exposes an overrideable method:

parse_start_url (response)
This method is called for the start_urls responses. It allows to parse the initial responses and must return
either an item object, a Request object, or an iterable containing any of them.

3.2. Spiders 39

https://scrapyd.readthedocs.io/en/latest/
https://www.sitemaps.org/index.html

Scrapy Documentation, Release 2.2.0

Crawling rules

class scrapy.spiders.Rule (link_extractor=None, callback=None, cb_kwargs=None, follow=None,

process_links=None, process_request=None, errback=None)
link_extractor is a Link Extractor object which defines how links will be extracted from each crawled

page. Each produced link will be used to generate a Request object, which will contain the link’s text in its
meta dictionary (under the 1ink_text key). If omitted, a default link extractor created with no arguments
will be used, resulting in all links being extracted.

callback is acallable or a string (in which case a method from the spider object with that name will be used)
to be called for each link extracted with the specified link extractor. This callback receives a Response as its
first argument and must return either a single instance or an iterable of item objects and/or Request objects
(or any subclass of them). As mentioned above, the received Response object will contain the text of the link
that produced the Request in its meta dictionary (under the 1ink_text key)

Warning: When writing crawl spider rules, avoid using parse as callback, since the CrawlSpider uses
the parse method itself to implement its logic. So if you override the parse method, the crawl spider will
no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the callback function.

follow is a boolean which specifies if links should be followed from each response extracted with this rule. If
callback is None follow defaults to True, otherwise it defaults to False.

process_links is a callable, or a string (in which case a method from the spider object with that na-
me will be used) which will be called for each list of links extracted from each response using the specified
link_extractor. This is mainly used for filtering purposes.

process_request is a callable (or a string, in which case a method from the spider object with that name
will be used) which will be called for every Request extracted by this rule. This callable should take said
request as first argument and the Response from which the request originated as second argument. It must
return a Request object or None (to filter out the request).

errback is a callable or a string (in which case a method from the spider object with that name will be used)
to be called if any exception is raised while processing a request generated by the rule. It receives a Twisted
Failure instance as first parameter.

New in version 2.0: The errback parameter.

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

import scrapy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor

class MySpider (CrawlSpider) :

name = 'example.com'
allowed_domains = ['example.com']
start_urls = ['http://www.example.com']

rules = (
Extract links matching 'category.php' (but not matching 'subsection.php')
and follow links from them (since no callback means follow=True by default).

(continues on next page)

40

Capitulo 3. Basic concepts

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 2.2.0

(continued from previous page)

Rule (LinkExtractor (allow=('category\.php',), deny=('subsection\.php',))),
Extract links matching 'item.php' and parse them with the spider's method_,

—parse_item
Rule (LinkExtractor (allow=("'item\.php',)), callback='parse_item'),

def parse_item(self, response):

self.logger.info('Hi, this is an item page! ', response.url)

item = scrapy.Item()

item['id'] = response.xpath('//td[@id="item_ id"]/text ()"').re(r"'ID: (\d+)")

item['name'] = response.xpath('//td[@id="item_name"]/text ()"').get ()

item['description'] = response.xpath('//td[@id="item description"]/text ()"').
—get ()

item['link_text'] = response.meta['link_text']

return item

This spider would start crawling example.com’s home page, collecting category links, and item links, parsing the latter
with the parse_item method. For each item response, some data will be extracted from the HTML using XPath,
and an Ttem will be filled with it.

XMLFeedSpider

class scrapy.spiders.XMLFeedSpider
XMLFeedSpider is designed for parsing XML feeds by iterating through them by a certain node name. The
iterator can be chosen from: iternodes, xml, and html. It’s recommended to use the iternodes iterator
for performance reasons, since the xm1 and html iterators generate the whole DOM at once in order to parse
it. However, using html as the iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class attributes:

iterator
A string which defines the iterator to use. It can be either:

= 'iternodes' - afastiterator based on regular expressions

= 'html' - aniterator which uses Selector. Keep in mind this uses DOM parsing and must load all
DOM in memory which could be a problem for big feeds

= 'xml' - an iterator which uses Selector. Keep in mind this uses DOM parsing and must load all
DOM in memory which could be a problem for big feeds

It defaults to: 'iternodes’'.

itertag
A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

namespaces
A list of (prefix, uri) tuples which define the namespaces available in that document that will be
processed with this spider. The prefix and uri will be used to automatically register namespaces using
the register_namespace () method.

You can then specify nodes with namespaces in the i tertag attribute.

Example:

3.2. Spiders 41

Scrapy Documentation, Release 2.2.0

class YourSpider (XMLFeedSpider) :

namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9")]
itertag = 'n:url'

#

Apart from these new attributes, this spider has the following overrideable methods too:

adapt_response (response)
A method that receives the response as soon as it arrives from the spider middleware, before the spider
starts parsing it. It can be used to modify the response body before parsing it. This method receives a
response and also returns a response (it could be the same or another one).

parse_node (response, selector)
This method is called for the nodes matching the provided tag name (itertag). Receives the response
and an Se lector for each node. Overriding this method is mandatory. Otherwise, you spider won’t work.
This method must return an item object, a Request object, or an iterable containing any of them.

process_results (response, results)
This method is called for each result (item or request) returned by the spider, and it’s intended to perform
any last time processing required before returning the results to the framework core, for example setting
the item IDs. It receives a list of results and the response which originated those results. It must return a
list of results (items or requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider (XMLFeedSpider) :

name = 'example.com'

allowed_domains = ['example.com']

start_urls = ['http://www.example.com/feed.xml']

iterator = 'iternodes' # This is actually unnecessary, since it's the default,,
—value

itertag = 'item'

def parse_node(self, response, node):
self.logger.info('Hi, this is a <%s> node!: ', self.itertag, ''.join(node.
—getall()))

item TestItem()

item['id'] = node.xpath ('@id') .get ()

item['name'] = node.xpath('name') .get ()
item['description'] = node.xpath('description') .get ()

return item

Basically what we did up there was to create a spider that downloads a feed from the given start_urls, and then

iterates through each of its item tags, prints them out, and stores some random data in an Ttem.

42 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

CSVFeedSpider

class scrapy.spiders.CSVFeedSpider
This spider is very similar to the XMLFeedSpider, except that it iterates over rows, instead of nodes. The method
that gets called in each iteration is parse_row ().

delimiter
A string with the separator character for each field in the CSV file Defaults to ', ' (comma).

quotechar
A string with the enclosure character for each field in the CSV file Defaults to ' " ' (quotation mark).

headers
A list of the column names in the CSV file.

parse_row (response, row)
Receives a response and a dict (representing each row) with a key for each provided (or detected)
header of the CSV file. This spider also gives the opportunity to override adapt_response and
process_results methods for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a CSVFeedSpider:

from scrapy.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider (CSVFeedSpider) :

name = 'example.com'

allowed_domains = ['example.com']

start_urls = ['http://www.example.com/feed.csv']
delimiter = ';'

quotechar = "'"

headers = ['id', 'name', 'description']

def parse_row(self, response, row):
self.logger.info('Hi, this is a row!: , row)

item = TestItem()

item['id'] = row['id']
item['name'] = row|['name']
item['description'] = row['description']

return item

SitemapSpider

class scrapy.spiders.SitemapSpider
SitemapSpider allows you to crawl a site by discovering the URLSs using Sitemaps.
It supports nested sitemaps and discovering sitemap urls from robots.txt.

sitemap_urls
A list of urls pointing to the sitemaps whose urls you want to crawl.

You can also point to a robots.txt and it will be parsed to extract sitemap urls from it.

sitemap_rules
A list of tuples (regex, callback) where:

3.2. Spiders 43

https://www.sitemaps.org/index.html
https://www.robotstxt.org/
https://www.robotstxt.org/

Scrapy Documentation, Release 2.2.0

= regex is a regular expression to match urls extracted from sitemaps. regex can be either a str or a
compiled regex object.

= callback is the callback to use for processing the urls that match the regular expression. callback
can be a string (indicating the name of a spider method) or a callable.

For example:

sitemap_rules = [('/product/', 'parse_product')]

Rules are applied in order, and only the first one that matches will be used.
If you omit this attribute, all urls found in sitemaps will be processed with the parse callback.

sitemap_follow
A list of regexes of sitemap that should be followed. This is only for sites that use Sitemap index files that
point to other sitemap files.

By default, all sitemaps are followed.

sitemap_alternate_links
Specifies if alternate links for one ur1l should be followed. These are links for the same website in another
language passed within the same url block.

For example:

<url>

<loc>http://example.com/</loc>

<xhtml:link rel="alternate" hreflang="de" href="http://example.com/de"/>
</url>

With sitemap_alternate_links set, this would retrieve both URLs. With
sitemap_alternate_links disabled, only http://example.com/ would be retrieved.

Defaultis sitemap_alternate_links disabled.

sitemap_filter (entries)
This is a filter function that could be overridden to select sitemap entries based on their attributes.

For example:

<url>
<loc>http://example.com/</loc>
<lastmod>2005-01-01</lastmod>
</url>

We can define a sitemap_filter function to filter ent ries by date:

from datetime import datetime
from scrapy.spiders import SitemapSpider

class FilteredSitemapSpider (SitemapSpider) :
name = 'filtered_sitemap_spider'
allowed_domains = ['example.com']
sitemap_urls = ['http://example.com/sitemap.xml']

def sitemap_filter(self, entries):
for entry in entries:
date_time = datetime.strptime (entry['lastmod'], 'S$Y-%m-%5d")
if date_time.year >= 2005:
yield entry

44 Capitulo 3. Basic concepts

https://www.sitemaps.org/protocol.html#index

Scrapy Documentation, Release 2.2.0

This would retrieve only ent ries modified on 2005 and the following years.

Entries are dict objects extracted from the sitemap document. Usually, the key is the tag name and the
value is the text inside it.

It’s important to notice that:
= as the loc attribute is required, entries without this tag are discarded
= alternate links are stored in a list with the key alternate (see sitemap_alternate_links)
= namespaces are removed, so Ixml tags named as { namespace}tagname become only tagname

If you omit this method, all entries found in sitemaps will be processed, observing other attributes and their
settings.

SitemapSpider examples

Simplest example: process all urls discovered through sitemaps using the parse callback:

from scrapy.spiders import SitemapSpider

class MySpider (SitemapSpider) :
sitemap_urls = ['http://www.example.com/sitemap.xml']

def parse(self, response):
pass # ... scrape item here

Process some urls with certain callback and other urls with a different callback:

from scrapy.spiders import SitemapSpider

class MySpider (SitemapSpider) :
sitemap_urls = ['http://www.example.com/sitemap.xml']
sitemap_rules = [
('/product/', 'parse_product'),
('/category/', 'parse_category'),

def parse_product (self, response):
pass # ... scrape product

def parse_category(self, response):
pass # ... scrape category

Follow sitemaps defined in the robots.txt file and only follow sitemaps whose url contains /sitemap_shop:

from scrapy.spiders import SitemapSpider

class MySpider (SitemapSpider) :
sitemap_urls = ['http://www.example.com/robots.txt']
sitemap_rules = [
('/shop/', 'parse_shop'),
]

sitemap_follow = ['/sitemap_shops']

def parse_shop(self, response):
pass # ... scrape shop here

3.2. Spiders 45

https://www.robotstxt.org/

Scrapy Documentation, Release 2.2.0

Combine SitemapSpider with other sources of urls:

from scrapy.spiders import SitemapSpider

class MySpider (SitemapSpider) :
sitemap_urls = ['http://www.example.com/robots.txt"']
sitemap_rules = [
('/shop/', 'parse_shop'),
]

other_urls = ['http://www.example.com/about"']

def start_requests(self):
requests = list (super (MySpider, self) .start_requests())
requests += [scrapy.Request (x, self.parse_other) for x in self.other_urls]
return requests

def parse_shop(self, response):
pass # ... scrape shop here

def parse_other(self, response):
pass # ... scrape other here

3.3 Selectors

When you’re scraping web pages, the most common task you need to perform is to extract data from the HTML source.
There are several libraries available to achieve this, such as:

= BeautifulSoup is a very popular web scraping library among Python programmers which constructs a Python
object based on the structure of the HTML code and also deals with bad markup reasonably well, but it has one
drawback: it’s slow.

= Ixmlis an XML parsing library (which also parses HTML) with a pythonic API based on Element Tree. (Ixml
is not part of the Python standard library.)

Scrapy comes with its own mechanism for extracting data. Theyre called selectors because they «select» certain parts
of the HTML document specified either by XPath or CSS expressions.

XPath is a language for selecting nodes in XML documents, which can also be used with HTML. CSS is a language
for applying styles to HTML documents. It defines selectors to associate those styles with specific HTML elements.

Note: Scrapy Selectors is a thin wrapper around parsel library; the purpose of this wrapper is to provide better
integration with Scrapy Response objects.

parsel is a stand-alone web scraping library which can be used without Scrapy. It uses Ixml library under the hood, and
implements an easy API on top of Ixml API. It means Scrapy selectors are very similar in speed and parsing accuracy
to Ixml.

46 Capitulo 3. Basic concepts

https://www.crummy.com/software/BeautifulSoup/
https://lxml.de/
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/selectors
https://www.w3.org/TR/xpath/all/
https://www.w3.org/TR/selectors
https://parsel.readthedocs.io/en/latest/
https://parsel.readthedocs.io/en/latest/
https://lxml.de/

Scrapy Documentation, Release 2.2.0

3.3.1 Using selectors

Constructing selectors

Response objects expose a Selector instance on . selector attribute:

>>> response.selector.xpath('//span/text () ") .get ()
'good'

Querying responses using XPath and CSS is so common that responses include two more shortcuts: response.
xpath () and response.css ():

>>> response.xpath('//span/text () ") .get ()
'good'

>>> response.css('span::text') .get ()
'good'

Scrapy selectors are instances of Selector class constructed by passing either TextResponse object or mar-
kup as an unicode string (in text argument). Usually there is no need to construct Scrapy selectors manually:
response object is available in Spider callbacks, so in most cases it is more convenient to use response.css ()
and response.xpath () shortcuts. By using response.selector or one of these shortcuts you can also en-
sure the response body is parsed only once.

But if required, it is possible to use Selector directly. Constructing from text:

>>> from scrapy.selector import Selector

>>> body = '<html><body>good</body></html>"
>>> Selector (text=body) .xpath ('//span/text () ') .get ()
'good'

Constructing from response - HtmlResponse is one of TextResponse subclasses:

>>> from scrapy.selector import Selector

>>> from scrapy.http import HtmlResponse

>>> response = HtmlResponse (url='http://example.com', body=body)
>>> Selector (response=response) .xpath ('//span/text () ') .get ()
'good'

Selector automatically chooses the best parsing rules (XML vs HTML) based on input type.

Using selectors
To explain how to use the selectors we’ll use the Scrapy shell (which provides interactive testing) and an example
page located in the Scrapy documentation server:

https://docs.scrapy.org/en/latest/_static/selectors-sample1.html

For the sake of completeness, here’s its full HTML code:

<html>
<head>
<base href='http://example.com/' />
<title>Example website</title>
</head>
<body>
<div id='images'>
Name: My image 1

(continues on next page)

3.3. Selectors 47

https://docs.scrapy.org/en/latest/_static/selectors-sample1.html

Scrapy Documentation, Release 2.2.0

(continued from previous page)

Name: My image 2

Name: My image 3

Name: My image 4

Name: My image 5

</div>
</body>
</html>

First, let’s open the shell:

scrapy shell https://docs.scrapy.org/en/latest/_static/selectors-samplel.html

Then, after the shell loads, you’ll have the response available as response shell variable, and its attached selector in
response.selector attribute.

Since we’re dealing with HTML, the selector will automatically use an HTML parser.

So, by looking at the HTML code of that page, let’s construct an XPath for selecting the text inside the title tag:

>>> response.xpath('//title/text ()")
[<Selector xpath='//title/text()' data='Example website'>]

To actually extract the textual data, you must call the selector .get () or .getall () methods, as follows:

>>> response.xpath('//title/text ()"').getall()
["Example website']
>>> response.xpath('//title/text ()") .get ()

'Example website'

.get () always returns a single result; if there are several matches, content of a first match is returned; if there are no
matches, None is returned. . getall () returns a list with all results.

Notice that CSS selectors can select text or attribute nodes using CSS3 pseudo-elements:

>>> response.css('title::text') .get ()
'Example website'

Asyoucansee, .xpath () and . css () methods returna SelectorList instance, which is a list of new selectors.
This API can be used for quickly selecting nested data:

>>> response.css('img') .xpath('@src') .getall ()
["imagel_thumb. jpg"',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

If you want to extract only the first matched element, you can call the selector .get () (or its alias
extract_first () commonly used in previous Scrapy versions):

>>> response.xpath('//div[@id="images"]/a/text () ") .get ()
'Name: My image 1 '

It returns None if no element was found:

>>> response.xpath('//div[@id="not-exists"]/text ()"').get () is None
True

48 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

A default return value can be provided as an argument, to be used instead of None:

>>> response.xpath('//div[@id="not-exists"]/text () ") .get (default="not-found")
'not-found’

Instead of using e.g. ' @src' XPath it is possible to query for attributes using .attrib property of a Selector:

>>> [img.attrib['src'] for img in response.css('img')]
["imagel_thumb. jpg',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

As a shortcut, . attrib is also available on SelectorList directly; it returns attributes for the first matching element:

>>> response.css('img') .attrib['src']
'imagel_thumb. jpg’

This is most useful when only a single result is expected, e.g. when selecting by id, or selecting unique elements on a
web page:

>>> response.css ('base').attrib['href']
'http://example.com/"'

Now we’re going to get the base URL and some image links:

>>> response.xpath('//base/@href') .get ()
'http://example.com/"'

>>> response.css ('base::attr (href) ') .get ()
'http://example.com/"'

>>> response.css ('base') .attrib['href']
'http://example.com/"'

>>> response.xpath('//al[contains (@href, "image")]/Q@href').getall()
['"imagel.html',

'image2.html’',

'image3.html',

'image4.html’',

'image5.html']

>>> response.css('alhrefx=image]::attr (href) ') .getall ()
["imagel.html',

'image2.html',

'image3.html’',

'image4.html',

'image5.html"']

>>> response.xpath('//al[contains (Ghref, "image")]/img/@src') .getall ()
["imagel_thumb. jpg"',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

3.3. Selectors 49

Scrapy Documentation, Release 2.2.0

>>> response.css ('alhrefx=image] img::attr(src)').getall()
['"imagel_thumb. jpg',

'image2_thumb. jpg',

'image3_thumb. jpg',

'image4_thumb. jpg',

'image5_thumb. jpg']

Extensions to CSS Selectors
Per W3C standards, CSS selectors do not support selecting text nodes or attribute values. But selecting these is so
essential in a web scraping context that Scrapy (parsel) implements a couple of non-standard pseudo-elements:

= to select text nodes, use : :text

= to select attribute values, use : :attr (name) where name is the name of the attribute that you want the value
of

Warning: These pseudo-elements are Scrapy-/Parsel-specific. They will most probably not work with other libra-
ries like Ixml or PyQuery.

Examples:

= title: :text selects children text nodes of a descendant <t it le> element:

>>> response.css('title::text') .get ()
'Example website'

= «::text selects all descendant text nodes of the current selector context:

>>> response.css ('#images x::text').getall()
['\n 'y
'Name: My image 1 ',
V\n l,
'Name: My image 2 ',
"\n 'y
'Name: My image 3 ',
"\n 'y
'Name: My image 4 ',
V\n l,
'Name: My image 5 ',
'"\n ']

» foo::text returns no results if foo element exists, but contains no text (i.e. text is empty):

>>> response.css('img::text') .getall()

(]

This means .css('foo::text').get () could return None even if an element exists. Use

default="" if you always want a string:
>>> response.css('img::text") .get ()
>>> response.css('img::text') .get (default="")

[}

» a::attr (href) selects the href attribute value of descendant links:

50 Capitulo 3. Basic concepts

https://www.w3.org/TR/selectors-3/#selectors
https://lxml.de/
https://pypi.org/project/pyquery/

Scrapy Documentation, Release 2.2.0

>>> response.css('a::attr (href)').getall()
['"imagel.html',

'image2.html’',

'image3.html',

'image4.html’',

'image5.html']

Note: See also: Selecting element attributes.

Note: You cannot chain these pseudo-elements. But in practice it would not make much sense: text nodes do not have
attributes, and attribute values are string values already and do not have children nodes.

Nesting selectors

The selection methods (. xpath () or . css ()) return a list of selectors of the same type, so you can call the selection
methods for those selectors too. Here’s an example:

>>> links = response.xpath('//al[contains (@href, "image")]")

>>> links.getall ()

['Name: My image 1
"',
'Name: My image 2
"',
'Name: My image 3
"',
'Name: My image 4
"',
'Name: My image 5
"']

>>> for index, link in enumerate (links):
args = (index, link.xpath('@href').get (), link.xpath('img/@src').get())
print ('Link number $d points to url %r and image 2r' % args)

Link number 0 points to url 'imagel.html' and image 'imagel_thumb. jpg’

Link number 1 points to url 'image2.html' and image 'image2_thumb.jpg’

Link number 2 points to url 'image3.html' and image 'image3_thumb. jpg’
Link number 3 points to url 'imaged4.html' and image 'image4_thumb. jpg’
Link number 4 points to url 'imageb5.html' and image 'image5_thumb.jpg’

Selecting element attributes

There are several ways to get a value of an attribute. First, one can use XPath syntax:

>>> response.xpath("//a/Chref") .getall ()
["imagel.html', 'image2.html', 'image3.html', 'image4.html', 'imageb5.html']

XPath syntax has a few advantages: it is a standard XPath feature, and @attributes can be used in other parts of
an XPath expression - e.g. it is possible to filter by attribute value.

Scrapy also provides an extension to CSS selectors (: :attzr (. ..)) which allows to get attribute values:

>>> response.css('a::attr (href) ') .getall ()
["imagel.html', 'image2.html', 'image3.html', 'image4.html', 'imageS5.html']

In addition to that, there is a . at t rib property of Selector. You can use it if you prefer to lookup attributes in Python
code, without using XPaths or CSS extensions:

3.3. Selectors 51

Scrapy Documentation, Release 2.2.0

>>>

[a.attrib['href'] for a in response.css('a')]

["imagel.html', 'image2.html', 'image3.html', 'image4.html', 'image5.html']

This property is also available on SelectorList; it returns a dictionary with attributes of a first matching element. It
is convenient to use when a selector is expected to give a single result (e.g. when selecting by element ID, or when
selecting an unique element on a page):

>>> response.css('base') .attrib
{'href': 'http://example.com/'}
>>> response.css ('base') .attrib['href']

'http://example.com/"’

.attrib property of an empty SelectorList is empty:

>>> response.css('foo') .attrib

{}

Using selectors with regular expressions

Selector also has a .re () method for extracting data using regular expressions. However, unlike using .
xpath () or .css () methods, . re () returns a list of unicode strings. So you can’t construct nested . re () calls.

Here’s an example used to extract image names from the HTML code above:

>>> response.xpath('//al[contains (@href, "image")]/text()').re(r'Name:\s* (.*)")

['My
"My
"My
VMy
"My

image 1°',
image 2',
image 3',
image 4°',
image 5']

There’s an additional helper reciprocating .get () (and its alias .extract_first ()) for .re (), named .
re_first (). Use it to extract just the first matching string:

>>> response.xpath('//al[contains (Ghref, "image")]/text ()').re_first (r'Name:\s* (.*)")

'My image 1'

extract() and extract_first()

If you're a long-time Scrapy user, you’re probably familiar with .extract () and .extract_first () selector
methods. Many blog posts and tutorials are using them as well. These methods are still supported by Scrapy, there are
no plans to deprecate them.

However, Scrapy usage docs are now written using .get () and .getall () methods. We feel that these new
methods result in a more concise and readable code.

The following examples show how these methods map to each other.

1. SelectorList.get () isthe same as SelectorList.extract_first ():
>>> response.css('a::attr (href) ') .get ()
'imagel.html'
>>> response.css('a::attr (href) ') .extract_first ()
'imagel.html'
2. SelectorList.getall () isthe same as SelectorList.extract ():
52 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

>>> response.css('a::attr (href) ') .getall()
["imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageb5.html']
>>> response.css('a::attr (href) ') .extract ()

['"imagel.html', 'image2.html', 'image3.html', 'imaged4.html', 'imageb5.html']

3. Selector.get () isthe same as Selector.extract ():

>>> response.css('a::attr (href) ') [0].get ()
'imagel.html'
>>> response.css('a::attr (href) ') [0].extract ()

'imagel.html'

4. For consistency, there is also Selector.getall (), which returns a list:

>>> response.css('a::attr (href) ') [0].getall ()
["imagel.html']

So, the main difference is that output of .get () and .getall () methods is more predictable: .get () always
returns a single result, .getall () always returns a list of all extracted results. With .extract () method it was
not always obvious if a result is a list or not; to get a single result either .extract () or .extract_first ()
should be called.

3.3.2 Working with XPaths

Here are some tips which may help you to use XPath with Scrapy selectors effectively. If you are not much familiar
with XPath yet, you may want to take a look first at this XPath tutorial.

Note: Some of the tips are based on this post from ScrapingHub’s blog.

Working with relative XPaths
Keep in mind that if you are nesting selectors and use an XPath that starts with /, that XPath will be absolute to the
document and not relative to the Selector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div> elements. First, you would get all <div>
elements:

>>> divs = response.xpath('//div")

At first, you may be tempted to use the following approach, which is wrong, as it actually extracts all <p> elements
from the document, not only those inside <div> elements:

>>> for p in divs.xpath('//p'): # this is wrong - gets all <p> from the whole_,
—document
print (p.get())

This is the proper way to do it (note the dot prefixing the . //p XPath):

>>> for p in divs.xpath('.//p'): # extracts all <p> inside
print (p.get())

Another common case would be to extract all direct <p> children:

3.3. Selectors 53

http://www.zvon.org/comp/r/tut-XPath_1.html
https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/

Scrapy Documentation, Release 2.2.0

>>> for p in divs.xpath('p'):
print (p.get ())

For more details about relative XPaths see the Location Paths section in the XPath specification.

When querying by class, consider using CSS

Because an element can contain multiple CSS classes, the XPath way to select elements by class is the rather verbose:

x [contains (concat (' ', normalize-space(@class), ' '), ' someclass '")]

If you use @class="someclass' you may end up missing elements that have other classes, and if you just use
contains (@class, 'someclass') to make up for that you may end up with more elements that you want, if
they have a different class name that shares the string someclass.

As it turns out, Scrapy selectors allow you to chain selectors, so most of the time you can just select by class using
CSS and then switch to XPath when needed:

>>> from scrapy import Selector

>>> sel = Selector (text='<div class="hero shout"><time datetime="2014-07-23 19:00">
—Special date</time></div>")

>>> sel.css('.shout') .xpath('./time/@datetime') .getall ()

['2014-07-23 19:00"]

This is cleaner than using the verbose XPath trick shown above. Just remember to use the . in the XPath expressions
that will follow.

Beware of the difference between //node[1] and (//node)[1]

//node [1] selects all the nodes occurring first under their respective parents.
(//node) [1] selects all the nodes in the document, and then gets only the first of them.

Example:

>>> from scrapy import Selector
>>> gel = Selector (text="""
et <ul class="list">
AP 1</1i>

R 2</1i>

et <1i>3</1i>

el

el <ul class="1list">
et 4</1i>

el b5</1i>

R 6</1i>

et ""m)

>>> xp = lambda x: sel.xpath(x).getall()

This gets all first <11i> elements under whatever it is its parent:

>>> xp("//1i[1]1")
["<1i>1</1i>", '<1i>4</1i>"]

And this gets the first <11> element in the whole document:

54 Capitulo 3. Basic concepts

https://www.w3.org/TR/xpath/all/#location-paths

Scrapy Documentation, Release 2.2.0

>>> xp (" (//11) [11")
['<1i>1</1i>"]

This gets all first <11i> elements under an parent:

>>> xp("//ul/11i[1]™)
["<1i>1</1i>", '<1li>4</1li>"']

And this gets the first <1i> element under an parent in the whole document:

>>> xp (" (//ul/1i) [1]")
['<1i>1</1i>"]

Using text nodes in a condition
When you need to use the text content as argument to an XPath string function, avoid using . //text () and use just
. instead.

This is because the expression . //text () yields a collection of text elements — a node-set. And when a node-set
is converted to a string, which happens when it is passed as argument to a string function like contains () or
starts-with (), it results in the text for the first element only.

Example:

>>> from scrapy import Selector
>>> sel = Selector (text='Click here to go to the Next Page</
—strong>")

Converting a node-set to string:

>>> sel.xpath('//a//text ()'").getall() # take a peek at the node-set
['"Click here to go to the ', 'Next Page']
>>> sel.xpath("string(//al[l]//text())").getall() # convert it to string

["Click here to go to the ']

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> sel.xpath("//a[l]").getall() # select the first node

['Click here to go to the Next Page']
>>> sel.xpath("string(//al[l])").getall() # convert it to string
["Click here to go to the Next Page']

So, using the . //text () node-set won’t select anything in this case:

>>> sel.xpath("//alcontains (.//text (), 'Next Page')]").getall()
[]

But using the . to mean the node, works:

>>> sel.xpath("//a[contains (., 'Next Page')]").getall()
['Click here to go to the Next Page']

3.3. Selectors 55

https://www.w3.org/TR/xpath/all/#section-String-Functions

Scrapy Documentation, Release 2.2.0

Variables in XPath expressions

XPath allows you to reference variables in your XPath expressions, using the $somevariable syntax. This is so-
mewhat similar to parameterized queries or prepared statements in the SQL world where you replace some arguments
in your queries with placeholders like ?, which are then substituted with values passed with the query.

Here’s an example to match an element based on its «id» attribute value, without hard-coding it (that was shown
previously):

>>> # "Sval’ used in the expression, a ‘val argument needs to be passed
>>> response.xpath('//div[@id=Sval]/a/text ()', val='images') .get ()
'Name: My image 1 '

Here’s another example, to find the «id» attribute of a <div> tag containing five <a> children (here we pass the value
5 as an integer):

>>> response.xpath('//div[count (a)=Scnt]/Qid', cnt=5).get ()
'images'

All variable references must have a binding value when calling . xpath () (otherwise you’ll get a ValueError:
XPath error: exception). This is done by passing as many named arguments as necessary.

parsel, the library powering Scrapy selectors, has more details and examples on XPath variables.

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of namespaces altogether and just work with
element names, to write more simple/convenient XPaths. You can use the Selector.remove_namespaces ()
method for that.

Let’s show an example that illustrates this with the Python Insider blog atom feed.

First, we open the shell with the url we want to scrape:

$ scrapy shell https://feeds.feedburner.com/PythonInsider

This is how the file starts:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet

<feed xmlns="http://www.w3.0rg/2005/Atom"
xmlns:openSearch="http://a9.com/-/spec/opensearchrss/1.0/"
xmlns:blogger="http://schemas.google.com/blogger/2008"
xmlns:georss="http://www.georss.org/georss"
xmlns:gd="http://schemas.google.com/g/2005"
xmlns:thr="http://purl.org/syndication/thread/1.0"
xmlns: feedburner="http://rssnamespace.org/feedburner/ext/1.0">

You can see several namespace declarations including a default «http://www.w3.0org/2005/Atom» and another one
using the «gd:» prefix for «http://schemas.google.com/g/2005».

Once in the shell we can try selecting all <1ink> objects and see that it doesn’t work (because the Atom XML
namespace is obfuscating those nodes):

>>> response.xpath("//1ink™)

L]

56 Capitulo 3. Basic concepts

https://parsel.readthedocs.io/en/latest/
https://parsel.readthedocs.io/en/latest/usage.html#variables-in-xpath-expressions
http://www.w3.org/2005/Atom
http://schemas.google.com/g/2005

Scrapy Documentation, Release 2.2.0

But once we call the Selector.remove_namespaces () method, all nodes can be accessed directly by their
names:

>>> response.selector.remove_namespaces ()

>>> response.xpath ("//1ink™")

[<Selector xpath='//link' data='<link rel="alternate" type="text/html" h'>,
<Selector xpath='//link' data='<link rel="next" type="application/atom+'>,

If you wonder why the namespace removal procedure isn’t always called by default instead of having to call it manua-
Ily, this is because of two reasons, which, in order of relevance, are:

1. Removing namespaces requires to iterate and modify all nodes in the document, which is a reasonably expensive
operation to perform by default for all documents crawled by Scrapy

2. There could be some cases where using namespaces is actually required, in case some element names clash
between namespaces. These cases are very rare though.

Using EXSLT extensions

Being built atop 1xml, Scrapy selectors support some EXSLT extensions and come with these pre-registered namespa-
ces to use in XPath expressions:

prefix | namespace usage
re http://exslt.org/regular-expressions | regular expressions
set http://exslt.org/sets set manipulation

Regular expressions

The test () function, for example, can prove quite useful when XPath’s starts-with () or contains () are
not sufficient.

Example selecting links in list item with a «class» attribute ending with a digit:

>>> from scrapy import Selector
>>> doc = u"""
<div>

<li class="item-0">first item</1i>
<li class="item-1">second item</1li>
<1li class="item—-inactive">third item</1li>
<li class="item-1">fourth item</1li>
<li class="item-0">fifth item</1li>

</div>
>>> sel = Selector (text=doc, type="html")
>>> sel.xpath('//1i//@href') .getall ()
['"linkl.html', '"link2.html', 'link3.html', 'link4.html', 'link5.html"']
>>> sel.xpath('//li[re:test (Rclass, "item—-\ds$")]//Q@href').getall()
["1linkl.html', '"link2.html', 'link4.html', 'link5.html']

3.3. Selectors 57

https://lxml.de/
http://exslt.org/
http://exslt.org/regexp/index.html
http://exslt.org/set/index.html

Scrapy Documentation, Release 2.2.0

Warning: C library 1ibxslt doesn’t natively support EXSLT regular expressions so Ixml’s implementation
uses hooks to Python’s re module. Thus, using regexp functions in your XPath expressions may add a small
performance penalty.

Set operations

These can be handy for excluding parts of a document tree before extracting text elements for example.

Example extracting microdata (sample content taken from https://schema.org/Product) with groups of itemscopes and
corresponding itemprops:

>>> doc = u"""
<div itemscope itemtype="http://schema.org/Product">
Kenmore White 17" Microwave

<div itemprop="aggregateRating"
itemscope itemtype="http://schema.org/AggregateRating">
Rated 3.5/5
based on 11 customer reviews
</div>

<div itemprop="offers" itemscope itemtype="http://schema.org/Offer">

$55.00

<link itemprop="availability" href="http://schema.org/InStock" />In stock
</div>

Product description:

0.7 cubic feet countertop microwave.
Has six preset cooking categories and convenience features like
Add-A-Minute and Child Lock.

Customer reviews:

<div itemprop="review" itemscope itemtype="http://schema.org/Review">
Not a happy camper -
by Ellie,
<meta itemprop="datePublished" content="2011-04-01">April 1, 2011
<div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
<meta itemprop="worstRating" content = "1">
1/
5stars
</div>
The lamp burned out and now I have to replace
it.
</div>

<div itemprop="review" itemscope itemtype="http://schema.org/Review">

Value purchase -

by Lucas,

<meta itemprop="datePublished" content="2011-03-25">March 25, 2011

<div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
<meta itemprop="worstRating" content = "1"/>
4/
5stars

</div>

(continues on next page)

58 Capitulo 3. Basic concepts

https://lxml.de/
https://schema.org/Product

Scrapy Documentation, Release 2.2.0

(continued from previous page)

Great microwave for the price. It is small and
fits in my apartment.
</div>
</div>
“ o e wwn
>>> sel = Selector (text=doc, type="html")
>>> for scope in sel.xpath('//div[Q@itemscope]'):
print ("current scope:", scope.xpath('@itemtype').getall())
props = scope.xpath('"'
set:difference (./descendant::*/Q@itemprop,

.//*[Qitemscope]/*/Q@itemprop) ''")
print (" properties: 2s" % (props.getall()))
print (nwn)
current scope: ['http://schema.org/Product']
properties: ['name', 'aggregateRating', 'offers', 'description', 'review', 'review
"]
current scope: ['http://schema.org/AggregateRating']
properties: ['ratingValue', 'reviewCount']
current scope: ['http://schema.org/Offer']
properties: ['price', 'availability']
current scope: ['http://schema.org/Review']
properties: ['name', 'author', 'datePublished', 'reviewRating', 'description']
current scope: ['http://schema.org/Rating']
properties: ['worstRating', 'ratingValue', 'bestRating']
current scope: ['http://schema.org/Review']
properties: ['name', 'author', 'datePublished', 'reviewRating', 'description']
current scope: ['http://schema.org/Rating']
properties: ['worstRating', 'ratingValue', 'bestRating']

Here we first iterate over itemscope elements, and for each one, we look for all itemprops elements and exclude
those that are themselves inside another itemscope.

Other XPath extensions

Scrapy selectors also provide a sorely missed XPath extension function has—class that returns True for nodes that
have all of the specified HTML classes.

For the following HTML.:

<p class="foo bar-baz">First</p>
<p class="foo">Second</p>

<p class="bar">Third</p>
<p>Fourth</p>

You can use it like this:

>>> response.xpath('//plhas-class ("foo")]")
[<Selector xpath='//plhas-class("foo")]' data='<p class="foo bar-baz">First</p>'>,

(continues on next page)

3.3. Selectors 59

Scrapy Documentation, Release 2.2.0

(continued from previous page)

<Selector xpath='//plhas—-class ("foo")]' data='<p class="foo">Second</p>"'>]
>>> response.xpath('//plhas-class ("foo", "bar-baz")]'")
[<Selector xpath='//pl[has-class ("foo", "bar-baz")]' data='<p class="foo bar-baz">First
—</p>"'>]
>>> response.xpath('//plhas-class ("foo", "bar")]")

[]

So XPath //p[has-class ("foo", "bar-baz")] is roughly equivalent to CSS p.foo.bar-baz. Please
note, that it is slower in most of the cases, because it’s a pure-Python function that’s invoked for every node in
question whereas the CSS lookup is translated into XPath and thus runs more efficiently, so performance-wise its
uses are limited to situations that are not easily described with CSS selectors.

Parsel also simplifies adding your own XPath extensions.

parsel.xpathfuncs.set_xpathfunc (fhame, func)
Register a custom extension function to use in XPath expressions.

The function func registered under fname identifier will be called for every matching node, being passed a
context parameter as well as any parameters passed from the corresponding XPath expression.

If func is None, the extension function will be removed.

See more in Ixml documentation.

3.3.3 Built-in Selectors reference
Selector objects
class scrapy.selector.Selector (*args, **kwargs)

An instance of Selector is a wrapper over response to select certain parts of its content.

response is an HtmlResponse or an XmlResponse object that will be used for selecting and extracting
data.

text is a unicode string or utf-8 encoded text for cases when a response isn’t available. Using text and
response together is undefined behavior.

type defines the selector type, it can be "html", "xml" or None (default).

If type is None, the selector automatically chooses the best type based on response type (see below), or
defaults to "html" in case it is used together with text.

If type is None and a response is passed, the selector type is inferred from the response type as follows:
= "html" for HtmlResponse type
» "xml" for XmlResponse type
= "html" for anything else

Otherwise, if t ype is set, the selector type will be forced and no detection will occur.

xpath (query, namespaces=None, **kwargs)
Find nodes matching the xpath query and return the result as a SelectorList instance with all ele-
ments flattened. List elements implement Selector interface too.

query is a string containing the XPATH query to apply.

namespaces 1is an optional prefix: namespace-uri mapping (dict) for additional
prefixes to those registered with register_namespace (prefix, uri). Contrary to
register_namespace (), these prefixes are not saved for future calls.

60 Capitulo 3. Basic concepts

http://lxml.de/extensions.html#xpath-extension-functions

Scrapy Documentation, Release 2.2.0

Any additional named arguments can be used to pass values for XPath variables in the XPath expression,
e.g.

selector.xpath('//alhref=$url] ', url="http://www.example.com")

Note: For convenience, this method can be called as response . xpath ()

css (query)
Apply the given CSS selector and return a SelectorList instance.

query is a string containing the CSS selector to apply.

In the background, CSS queries are translated into XPath queries using cssselect library and run .
xpath () method.

Note: For convenience, this method can be called as response.css ()

get ()
Serialize and return the matched nodes in a single unicode string. Percent encoded content is unquoted.

See also: extract() and extract_first()

attrib
Return the attributes dictionary for underlying element.

See also: Selecting element attributes.

re (regex, replace_entities=True)
Apply the given regex and return a list of unicode strings with the matches.

regex can be either a compiled regular expression or a string which will be compiled to a regular expres-
sion using re . compile (regex).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;). Passing replace_entities as False switches off these replacements.

re_first (regex, default=None, replace_entities=True)
Apply the given regex and return the first unicode string which matches. If there is no match, return the
default value (None if the argument is not provided).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;). Passing replace_entities as False switches off these replacements.

register namespace (prefix, uri)
Register the given namespace to be used in this Selector. Without registering namespaces you can’t
select or extract data from non-standard namespaces. See Selector examples on XML response.

remove_namespaces ()
Remove all namespaces, allowing to traverse the document using namespace-less xpaths. See Removing
namespaces.

__bool_ ()
Return True if there is any real content selected or False otherwise. In other words, the boolean value
of a Selector is given by the contents it selects.

getall ()
Serialize and return the matched node in a 1-element list of unicode strings.

3.3. Selectors 61

https://pypi.python.org/pypi/cssselect/

Scrapy Documentation, Release 2.2.0

This method is added to Selector for consistencys; it is more useful with SelectorList. See also: extract()
and extract_first()

SelectorList objects

class scrapy.selector.Selectorlist (iterable=(),/)
The SelectorList class is a subclass of the builtin 1ist class, which provides a few additional methods.

xpath (xpath, namespaces=None, **kwargs)
Call the .xpath () method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.xpath ()

namespaces 1is an optional prefix: namespace-uri mapping (dict) for additional
prefixes to those registered with register_namespace (prefix, uri). Contrary to
register_namespace (), these prefixes are not saved for future calls.

Any additional named arguments can be used to pass values for XPath variables in the XPath expression,
e.g.

selector.xpath('//alhref=$url]', url="http://www.example.com")

css (query)
Call the .css () method for each element in this list and return their results flattened as another
SelectorList.

query is the same argument as the one in Selector.css ()

getall ()
Call the . get () method for each element is this list and return their results flattened, as a list of unicode
strings.

See also: extract() and extract_first()

get (default=None)
Return the result of . get () for the first element in this list. If the list is empty, return the default value.

See also: extract() and extract_first()

re (regex, replace_entities=True)
Call the . re () method for each element in this list and return their results flattened, as a list of unicode
strings.

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;. Passing replace_entities as False switches off these replacements.

re_first (regex, default=None, replace_entities=True)
Call the . re () method for the first element in this list and return the result in an unicode string. If the
list is empty or the regex doesn’t match anything, return the default value (None if the argument is not
provided).

By default, character entity references are replaced by their corresponding character (except for samp;
and &1t ;. Passing replace_entities as False switches off these replacements.

attrib
Return the attributes dictionary for the first element. If the list is empty, return an empty dict.

See also: Selecting element attributes.

62 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

3.3.4 Examples
Selector examples on HTML response

Here are some Selector examples to illustrate several concepts. In all cases, we assume there is already a
Selector instantiated with a Htm1Response object like this:

sel = Selector (html_response)

1. Select all <hl> elements from an HTML response body, returning a list of Selector objects (i.e. a
SelectorList object):

sel.xpath("//h1l™)

2. Extract the text of all <h1> elements from an HTML response body, returning a list of unicode strings:

sel.xpath("//hl1") .getall () # this includes the hl tag
sel.xpath("//hl/text ()").getall () # this excludes the hl tag

3. Iterate over all <p> tags and print their class attribute:

for node in sel.xpath("//p"):
print (node.attrib['class'])

Selector examples on XML response

Here are some examples to illustrate concepts for Selector objects instantiated with an XmI1Response object:

sel = Selector (xml_response)

1. Select all <product> elements from an XML response body, returning a list of Selector objects (i.e. a
SelectorList object):

sel.xpath ("//product™)

2. Extract all prices from a Google Base XML feed which requires registering a namespace:

sel.register_namespace ("g", "http://base.google.com/ns/1.0")
sel.xpath("//g:price") .getall ()

3.4 Items

The main goal in scraping is to extract structured data from unstructured sources, typically, web pages. Spiders may
return the extracted data as items, Python objects that define key-value pairs.

Scrapy supports multiple types of items. When you create an item, you may use whichever type of item you want.
When you write code that receives an item, your code should work for any item type.

3.4. ltems 63

https://support.google.com/merchants/answer/160589?hl=en&ref_topic=2473799

Scrapy Documentation, Release 2.2.0

3.4.1 ltem Types

Scrapy supports the following types of items, via the itemadapter library: dictionaries, Item objects, dataclass objects,
and attrs objects.

Dictionaries

As an item type, dict is convenient and familiar.

Item objects

Itemprovides a dict-like API plus additional features that make it the most feature-complete item type:

class scrapy.item.Item([arg])
Item objects replicate the standard dict APIL including its __init__ method.

Item allows defining field names, so that:
= KeyError is raised when using undefined field names (i.e. prevents typos going unnoticed)

» [tem exporters can export all fields by default even if the first scraped object does not have values for all of
them

Item also allows defining field metadata, which can be used to customize serialization.

trackref tracks ITtem objects to help find memory leaks (see Debugging memory leaks with trackref).
Item objects also provide the following additional API members:

copy ()

deepcopy ()
Return a deepcopy () of this item.

fields
A dictionary containing all declared fields for this Item, not only those populated. The keys are the field
names and the values are the 7"ie 1d objects used in the Item declaration.

Example:

from scrapy.item import Item, Field

class CustomItem(Item) :
one_field = Field()
another_ field = Field()

Dataclass objects

New in version 2.2.

dataclass () allows defining item classes with field names, so that irem exporters can export all fields by default
even if the first scraped object does not have values for all of them.

Additionally, dataclass items also allow to:
= define the type and default value of each defined field.

= define custom field metadata through dataclasses.field (), which can be used to customize serialization.

64 Capitulo 3. Basic concepts

https://github.com/scrapy/itemadapter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/dataclasses.html#dataclasses.field

Scrapy Documentation, Release 2.2.0

They work natively in Python 3.7 or later, or using the dataclasses backport in Python 3.6.

Example:

from dataclasses import dataclass

@dataclass

class CustomItem:
one_field: str
another field: int

Note: Field types are not enforced at run time.

attr.s objects

New in version 2.2.

attr.s () allows defining item classes with field names, so that item exporters can export all fields by default even
if the first scraped object does not have values for all of them.

Additionally, attr. s items also allow to:

= define the type and default value of each defined field.

= define custom field metadata, which can be used to customize serialization.
In order to use this type, the attrs package needs to be installed.

Example:

import attr

@attr.s

class CustomItem:
one_field = attr.ib ()
another field = attr.ib ()

3.4.2 Working with Item objects

Declaring Iltem subclasses

Item subclasses are declared using a simple class definition syntax and Fie1d objects. Here is an example:

import scrapy

class Product (scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
stock = scrapy.Field()
tags = scrapy.Field()
last_updated = scrapy.Field(serializer=str)

Note: Those familiar with Django will notice that Scrapy Items are declared similar to Django Models, except that
Scrapy Items are much simpler as there is no concept of different field types.

3.4. ltems 65

https://pypi.org/project/dataclasses/
https://www.attrs.org/en/stable/api.html#attr.s
https://www.attrs.org/en/stable/examples.html#metadata
https://www.attrs.org/en/stable/index.html
https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/topics/db/models/

Scrapy Documentation, Release 2.2.0

Declaring fields

Field objects are used to specify metadata for each field. For example, the serializer function for the
last_updated field illustrated in the example above.

You can specify any kind of metadata for each field. There is no restriction on the values accepted by "1 e 1d objects.
For this same reason, there is no reference list of all available metadata keys. Each key defined in i e 1 d objects could
be used by a different component, and only those components know about it. You can also define and use any other
Field key in your project too, for your own needs. The main goal of 7ield objects is to provide a way to define
all field metadata in one place. Typically, those components whose behaviour depends on each field use certain field
keys to configure that behaviour. You must refer to their documentation to see which metadata keys are used by each
component.

It’s important to note that the i e 1d objects used to declare the item do not stay assigned as class attributes. Instead,
they can be accessed through the Ttem. fields attribute.

class scrapy.item.Field/([arg])
The Field class is just an alias to the built-in dict class and doesn’t provide any extra functionality or
attributes. In other words, 71 e 1d objects are plain-old Python dicts. A separate class is used to support the item
declaration syntax based on class attributes.

Note: Field metadata can also be declared for dataclass and attrs items. Please refer to the documentation for
dataclasses.field and attr.ib for additional information.

Working with Item objects

Here are some examples of common tasks performed with items, using the Product item declared above. You will
notice the API is very similar to the dict APL

Creating items

>>> product = Product (name='Desktop PC', price=1000)
>>> print (product)
Product (name="'Desktop PC', price=1000)

Getting field values

>>> product ['name']
Desktop PC

>>> product.get ('name')
Desktop PC

>>> product|['price']
1000

>>> product['last_updated']
Traceback (most recent call last):

KeyError: 'last_updated’

66 Capitulo 3. Basic concepts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/dataclasses.html#dataclasses.field
https://www.attrs.org/en/stable/api.html#attr.ib
https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

>>> product.get ('last_updated', 'not set')
not set

>>> product|['lala']l # getting unknown field
Traceback (most recent call last):

KeyError: 'lala'

>>> product.get ('lala', 'unknown field")
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'

>>> product['last_updated']

today

>>> product['lala'] = 'test' # setting unknown field

Traceback (most recent call last):

KeyError: 'Product does not support field: lala'

Accessing all populated values

To access all populated values, just use the typical dict API:

>>> product.keys ()
['price', 'name']

>>> product.items ()
[("price', 1000), ('name', 'Desktop PC')]

3.4. ltems 67

https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

Copying items

To copy an item, you must first decide whether you want a shallow copy or a deep copy.

If your item contains mutable values like lists or dictionaries, a shallow copy will keep references to the same mutable
values across all different copies.

For example, if you have an item with a list of tags, and you create a shallow copy of that item, both the original item
and the copy have the same list of tags. Adding a tag to the list of one of the items will add the tag to the other item as
well.

If that is not the desired behavior, use a deep copy instead.
See copy for more information.

To create a shallow copy of an item, you can either call copy () on an existing item (product2 = product.
copy ()) or instantiate your item class from an existing item (product2 = Product (product)).

To create a deep copy, call deepcopy () instead (product2 = product.deepcopy ()).

Other common tasks

Creating dicts from items:

>>> dict (product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product ({ 'name': 'Laptop PC', 'price': 1500})
Product (price=1500, name='Laptop PC')

>>> Product ({ 'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):

KeyError: 'Product does not support field: lala'

Extending Item subclasses

You can extend Items (to add more fields or to change some metadata for some fields) by declaring a subclass of your
original Item.

For example:

class DiscountedProduct (Product) :
discount_percent = scrapy.Field(serializer=str)
discount_expiration_date = scrapy.Field()

You can also extend field metadata by using the previous field metadata and appending more values, or changing
existing values, like this:

class SpecificProduct (Product) :
name = scrapy.Field(Product.fields['name'], serializer=my_serializer)

That adds (or replaces) the serializer metadata key for the name field, keeping all the previously existing meta-
data values.

68 Capitulo 3. Basic concepts

https://docs.python.org/3/glossary.html#term-mutable
https://docs.python.org/3/library/copy.html#module-copy

Scrapy Documentation, Release 2.2.0

3.4.3 Supporting All ltem Types
In code that receives an item, such as methods of item pipelines or spider middlewares, it is a good practice to use the
ItemAdapter class and the is_item () function to write code that works for any supported item type:

class itemadapter.ItemAdapter (item: Any)
Wrapper class to interact with data container objects. It provides a common interface to extract and set data
without having to take the object’s type into account.

itemadapter.is_item (0bj: Any) — bool
Return True if the given object belongs to one of the supported types, False otherwise.

3.4.4 Other classes related to items

class scrapy.item.ItemMeta (class_name, bases, attrs)
Metaclass of Ttem that handles field definitions.

3.5 Iltem Loaders

Item Loaders provide a convenient mechanism for populating scraped items. Even though items can be populated di-
rectly, Item Loaders provide a much more convenient API for populating them from a scraping process, by automating
some common tasks like parsing the raw extracted data before assigning it.

In other words, items provide the container of scraped data, while Item Loaders provide the mechanism for populating
that container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism for extending and overriding different
field parsing rules, either by spider, or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

Note: Item Loaders are an extension of the itemloaders library that make it easier to work with Scrapy by adding
support for responses.

3.5.1 Using Iltem Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either instantiate it with an ifem object or without one,
in which case an item object is automatically created in the Item Loader __init___ method using the irem class
specified in the TtemLoader.default_item class attribute.

Then, you start collecting values into the Item Loader, typically using Selectors. You can add more than one value to
the same item field; the Item Loader will know how to «join» those values later using a proper processing function.

Note: Collected data is internally stored as lists, allowing to add several values to the same field. If an it em argument
is passed when creating a loader, each of the item’s values will be stored as-is if it’s already an iterable, or wrapped
with a list if it’s a single value.

Here is a typical Item Loader usage in a Spider, using the Product item declared in the Items chapter:

from scrapy.loader import ItemLoader
from myproject.items import Product

(continues on next page)

3.5. Iltem Loaders 69

https://docs.python.org/3/library/functions.html#bool
https://realpython.com/python-metaclasses
https://itemloaders.readthedocs.io/en/latest/

Scrapy Documentation, Release 2.2.0

(continued from previous page)

def parse(self, response):
1 = ItemLoader (item=Product (), response=response)
.add_xpath ('name', '//div[@class="product_name"]")
.add_xpath ('name', '//div[@class="product_title"]")
.add_xpath ('price', '"//pl[@id="price"]")
.add_css ('stock', 'p#stock]")
.add_value ('last_updated', 'today') # you can also use literal values
return 1.load_item()

e e e

By quickly looking at that code, we can see the name field is being extracted from two different XPath locations in
the page:

1. //div[@class="product_name"]
2. //div[Q@class="product_title"]

In other words, data is being collected by extracting it from two XPath locations, using the add_xpath () method.
This is the data that will be assigned to the name field later.

Afterwards, similar calls are used for price and stock fields (the latter using a CSS selector with the add_css ()
method), and finally the 1last_update field is populated directly with a literal value (today) using a different
method: add value ().

Finally, when all data is collected, the TtemLoader.load item () method is called which actually returns
the item populated with the data previously extracted and collected with the add_xpath (), add_css (), and
add_value () calls.

3.5.2 Working with dataclass items

By default, dataclass items require all fields to be passed when created. This could be an issue when using dataclass
items with item loaders: unless a pre-populated item is passed to the loader, fields will be populated incrementally
using the loader’s add_xpath (), add_css () and add_value () methods.

One approach to overcome this is to define items using the field () function, with a default argument:

from dataclasses import dataclass, field
from typing import Optional

@dataclass

class InventorylItem:
name: Optional[str] = field(default=None)
price: Optional[float] = field(default=None)

stock: Optional[int] = field(default=None)

3.5.3 Input and Output processors

An Item Loader contains one input processor and one output processor for each (item) field. The input processor
processes the extracted data as soon as it’s received (through the add _xpath (), add_css () or add_value ()
methods) and the result of the input processor is collected and kept inside the ItemLoader. After collecting all data,
the TtemLoader. load_ item () method is called to populate and get the populated item object. That’s when the
output processor is called with the data previously collected (and processed using the input processor). The result of
the output processor is the final value that gets assigned to the item.

Let’s see an example to illustrate how the input and output processors are called for a particular field (the same applies
for any other field):

70 Capitulo 3. Basic concepts

https://docs.python.org/3/library/dataclasses.html#dataclasses.field

Scrapy Documentation, Release 2.2.0

ItemLoader (Product (), some_selector)

.add_xpath('name', xpathl) # (1)

.add_css ('name', css) # (3)
.add_value ('name', 'test') # (4)
return 1.load_item() # (5)

1
1
1.add_xpath('name', xpath2) # (2)
1
1

So what happens is:

1.

Data from xpathl is extracted, and passed through the input processor of the name field. The result of the
input processor is collected and kept in the Item Loader (but not yet assigned to the item).

Data from xpath? is extracted, and passed through the same input processor used in (1). The result of the input
processor is appended to the data collected in (1) (if any).

This case is similar to the previous ones, except that the data is extracted from the css CSS selector, and passed
through the same input processor used in (1) and (2). The result of the input processor is appended to the data
collected in (1) and (2) (if any).

This case is also similar to the previous ones, except that the value to be collected is assigned directly, instead of
being extracted from a XPath expression or a CSS selector. However, the value is still passed through the input
processors. In this case, since the value is not iterable it is converted to an iterable of a single element before
passing it to the input processor, because input processor always receive iterables.

The data collected in steps (1), (2), (3) and (4) is passed through the output processor of the name field. The
result of the output processor is the value assigned to the name field in the item.

It’s worth noticing that processors are just callable objects, which are called with the data to be parsed, and return a
parsed value. So you can use any function as input or output processor. The only requirement is that they must accept
one (and only one) positional argument, which will be an iterable.

Changed in version 2.0: Processors no longer need to be methods.

Note: Both input and output processors must receive an iterable as their first argument. The output of those functions
can be anything. The result of input processors will be appended to an internal list (in the Loader) containing the
collected values (for that field). The result of the output processors is the value that will be finally assigned to the item.

The other thing you need to keep in mind is that the values returned by input processors are collected internally (in
lists) and then passed to output processors to populate the fields.

Last, but not least, itemloaders comes with some commonly used processors built-in for convenience.

3.5.4 Declaring Item Loaders

Item Loaders are declared using a class definition syntax. Here is an example:

from itemloaders.processors import TakeFirst, MapCompose, Join
from scrapy.loader import ItemlLoader

class ProductLoader (ItemLoader) :

default_output_processor = TakeFirst ()

name_in = MapCompose (unicode.title)
name_out = Join ()

(continues on next page)

3.5.

Item Loaders 71

https://itemloaders.readthedocs.io/en/latest/
https://itemloaders.readthedocs.io/en/latest/built-in-processors.html#built-in-processors

Scrapy Documentation, Release 2.2.0

(continued from previous page)

price_in = MapCompose (unicode.strip)

#

As you can see, input processors are declared using the _in suffix while output processors are declared
using the _out suffix. And you can also declare a default input/output processors using the ItemLoader.
default_input_processor and ItemLoader.default_output_processor attributes.

3.5.5 Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in the Item Loader definition, and it’s very
common to declare input processors this way. However, there is one more place where you can specify the input and
output processors to use: in the Item Field metadata. Here is an example:

import scrapy
from itemloaders.processors import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags

def filter_price(value):
if value.isdigit () :
return value

class Product (scrapy.Item):

name = scrapy.Field(
input_processor=MapCompose (remove_tags),
output_processor=Join (),

)

price = scrapy.Field(
input_processor=MapCompose (remove_tags, filter_price),
output_processor=TakeFirst (),

>>> from scrapy.loader import ItemLoader

>>> 1] = ItemLoader (item=Product ())

>>> il.add_value('name', [u'Welcome to my', u'website'])
>>> il.add_value ('price', [u'€', u'1000"'])

>>> il.load_item()

{'name': u'Welcome to my website', 'price': u'l000'}

The precedence order, for both input and output processors, is as follows:
1. Item Loader field-specific attributes: field_inand field_out (most precedence)
2. Field metadata (input_processor and output_processor key)

3. Item Loader defaults: TtemlLoader.default_ input_processor() and TtemLoader.
default_output_processor () (least precedence)

See also: Reusing and extending Item Loaders.

72 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

3.5.6 Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among all input and output processors in
the Item Loader. It can be passed when declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text value and extracts a length from it:

def parse_length(text, loader_context):
unit = loader_context.get ('unit', 'm'")
... length parsing code goes here
return parsed_length

By accepting a 1loader_context argument the function is explicitly telling the Item Loader that it’s able to receive
an Item Loader context, so the Item Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

1. By modifying the currently active Item Loader context (context attribute):

loader = ItemLoader (product)
loader.context['unit'] = 'cm'

2. On Item Loader instantiation (the keyword arguments of Item Loader __init__ method are stored in the Item
Loader context):

loader = ItemLoader (product, unit='cm'")

3. On Item Loader declaration, for those input/output processors that support instantiating them with an Item
Loader context. MapCompose is one of them:

class ProductLoader (ItemLoader) :
length_out = MapCompose (parse_length, unit='cm')

3.5.7 ltemLoader objects

class scrapy.loader.ItemLoader (ifem=None, selector=None, response=None, parent=None,

**context)
A user-friendly abstraction to populate an ifem with data by applying field processors to scraped data. When

instantiated with a selector or a response it supports data extraction from web pages using selectors.
Parameters

» item (scrapy.item.Item)— The item instance to populate using subsequent calls to
add_xpath(),add _css(),or add _value ().

= selector (Selector object) — The selector to extract data from, when using the
add_xpath (), add _css (), replace_xpath(),or replace_css () method.

= response (Response object) — The response used to construct the selector using the
default_selector_class, unless the selector argument is given, in which case this
argument is ignored.

If no item is given, one is instantiated automatically using the class in default_item class.

The item, selector, response and remaining keyword arguments are assigned to the Loader context (accessible
through the context attribute).

3.5. Iltem Loaders 73

Scrapy Documentation, Release 2.2.0

item
The item object being parsed by this Item Loader. This is mostly used as a property so, when attempting
to override this value, you may want to check out default_item class first.

context
The currently active Context of this Item Loader.

default_item class
An item class (or factory), used to instantiate items when not given inthe __init___ method.

default_input_processor
The default input processor to use for those fields which don’t specify one.

default_output_processor
The default output processor to use for those fields which don’t specify one.

default_selector_ class
The class used to construct the selector of this TtemLoader, if only a response is given in the
__init__ method. If aselectoris giveninthe __init__ method this attribute is ignored. This attribute
is sometimes overridden in subclasses.

selector
The Selector object to extract data from. It’s either the selector given inthe __init__ method or one
created from the response given in the __init__ method using the default_selector_class.
This attribute is meant to be read-only.

add_css (field_name, css, *processors, **kw)
Similar to ITtemLoader.add_value () but receives a CSS selector instead of a value, which is used
to extract a list of unicode strings from the selector associated with this TtemLoader.

See get_css () for kwargs.
Parameters css (st r) — the CSS selector to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_css('name', 'p.product-name')

HTML snippet: <p id="price">the price is $1200</p>
loader.add_css('price', 'p#price', re='the price is (.x)")

add_value (field_name, value, *processors, **kw)
Process and then add the given value for the given field.

The value is first passed through get_value () by giving the processors and kwargs, and then
passed through the field input processor and its result appended to the data collected for that field. If the
field already contains collected data, the new data is added.

The given field_name can be None, in which case values for multiple fields may be added. And the
processed value should be a dict with field_name mapped to values.

Examples:

loader.add_value ('name' 'Color TV'")

loader.add_value('colours ['white', 'blue'l])
loader.add_value('length', 'IOOH

loader.add_value ('name', 'name: foo', TakeFirst (), re='name: (.+)")
loader.add_value (None, {'name': 'foo', 'sex': 'male'})

add_xpath (field_name, xpath, *processors, **kw)
Similar to TtemLoader.add _value () but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this ITtemLoader.

Capitulo 3. Basic concepts

https://itemloaders.readthedocs.io/en/latest/loaders-context.html#loaders-context
https://docs.python.org/3/library/stdtypes.html#str
https://itemloaders.readthedocs.io/en/latest/processors.html#processors

Scrapy Documentation, Release 2.2.0

See get__xpath () for kwargs.
Parameters xpath (st r)—the XPath to extract data from

Examples:

HTMIL snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//pl[@class="product-name"]")

HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//pl[@id="price"]', re="'the price is (.*)")

get_collected_values (field_name)
Return the collected values for the given field.

get_css (css, *processors, **kw)
Similar to TtemLoader.get_value () but receives a CSS selector instead of a value, which is used
to extract a list of unicode strings from the selector associated with this TtemLoader.

Parameters
» css (str)—the CSS selector to extract data from

» re(str or compiled regex)—aregular expression to use for extracting data from
the selected CSS region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_css('p.product—name")

HTML snippet: <p id="price">the price is $1200</p>
loader.get_css ('p#price', TakeFirst(), re='the price is (.*)")

get_output_value (field_name)
Return the collected values parsed using the output processor, for the given field. This method doesn’t
populate or modify the item at all.

get_value (value, *processors, **kw)
Process the given value by the given processors and keyword arguments.

Available keyword arguments:

Parameters re (str or compiled regex) — a regular expression to use for extracting
data from the given value using extract_regex () method, applied before processors

Examples:

>>> from itemloaders import ItemLoader
>>> from itemloaders.processors import TakeFirst

>>> loader = ItemLoader ()
>>> loader.get_value ('name: foo', TakeFirst (), str.upper, re='name: (.+)")
'FOO'

get_xpath (xpath, *processors, **kw)
Similar to TtemLoader.get_value () but receives an XPath instead of a value, which is used to
extract a list of unicode strings from the selector associated with this TtemLoader.

Parameters
» xpath (str) - the XPath to extract data from

» re(str or compiled regex)—aregular expression to use for extracting data from
the selected XPath region

3.5. Iltem Loaders 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//pl[lclass="product-name"]")

HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst (), re='the price is (.%)"')

load_item()
Populate the item with the data collected so far, and return it. The data collected is first passed through the
output processors to get the final value to assign to each item field.

nested_css (css, **context)
Create a nested loader with a css selector. The supplied selector is applied relative to selector associated
with this TtemLoader. The nested loader shares the item with the parent TtemLoader so calls to
add_xpath (), add_value (), replace_value (), etc. will behave as expected.

nested_xpath (xpath, **context)
Create a nested loader with an xpath selector. The supplied selector is applied relative to selector associated
with this TtemLoader. The nested loader shares the item with the parent TtemLoader so calls to
add_xpath (), add_value (), replace_value (), etc. will behave as expected.

replace_css (field_name, css, *processors, **kw)
Similar to add_css () but replaces collected data instead of adding it.

replace_value (field_name, value, *processors, **kw)
Similar to add_value () but replaces the collected data with the new value instead of adding it.

replace_xpath (field_name, xpath, *processors, **kw)
Similar to add_xpath () but replaces collected data instead of adding it.

3.5.8 Nested Loaders

When parsing related values from a subsection of a document, it can be useful to create nested loaders. Imagine you’re
extracting details from a footer of a page that looks something like:

Example:

<footer>
Like Us
Follow Us
Email Us
</footer>

Without nested loaders, you need to specify the full xpath (or css) for each value that you wish to extract.

Example:

loader = ItemLoader (item=Item())

load stuff not in the footer

loader.add_xpath('social', '//footer/a[@class = "social"]/Q@href")
loader.add_xpath('email', '//footer/a[@class = "email"]/@href')

loader.load_item()

Instead, you can create a nested loader with the footer selector and add values relative to the footer. The functionality
is the same but you avoid repeating the footer selector.

Example:

76 Capitulo 3. Basic concepts

https://itemloaders.readthedocs.io/en/latest/processors.html#processors

Scrapy Documentation, Release 2.2.0

loader = ItemLoader (item=Item())

load stuff not in the footer

footer_loader = loader.nested_xpath('//footer")
footer_loader.add_xpath('social', 'a[@class = "social"]/@href")
footer_loader.add_xpath('email', 'a[lclass = "email"]/@href")

no need to call footer_loader.load _item()

loader.load_item{()

You can nest loaders arbitrarily and they work with either xpath or css selectors. As a general guideline, use nested
loaders when they make your code simpler but do not go overboard with nesting or your parser can become difficult
to read.

3.5.9 Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance becomes a fundamental problem,
especially when you have to deal with many different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules, without losing flexibility and, at the same
time, providing a convenient mechanism for extending and overriding them. For this reason Item Loaders support
traditional Python class inheritance for dealing with differences of specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in three dashes (e.g. ———Plasma
TV---) and you don’t want to end up scraping those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default Product Item Loader
(ProductLoader):

from itemloaders.processors import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes (x):
return x.strip('-")

class SiteSpecificLoader (ProductLoader) :
name_in = MapCompose (strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have multiple source formats, for example
XML and HTML. In the XML version you may want to remove CDATA occurrences. Here’s an example of how to do
it:

from itemloaders.processors import MapCompose
from myproject.ItemlLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader (ProductLoader) :
name_in = MapCompose (remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata, as they usually depend only on
the field and not on each specific site parsing rule (as input processors do). See also: Declaring Input and Output
Processors.

There are many other possible ways to extend, inherit and override your Item Loaders, and different Item Loaders
hierarchies may fit better for different projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s needs.

3.5. Iltem Loaders 77

Scrapy Documentation, Release 2.2.0

3.6 Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your scraping code very quickly, without having
to run the spider. It’s meant to be used for testing data extraction code, but you can actually use it for testing any kind
of code as it is also a regular Python shell.

The shell is used for testing XPath or CSS expressions and see how they work and what data they extract from the
web pages you’re trying to scrape. It allows you to interactively test your expressions while you’re writing your spider,
without having to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an invaluable tool for developing and debugging
your spiders.

3.6.1 Configuring the shell
If you have IPython installed, the Scrapy shell will use it (instead of the standard Python console). The IPython console
is much more powerful and provides smart auto-completion and colorized output, among other things.

We highly recommend you install [Python, specially if you’re working on Unix systems (where [Python excels). See
the IPython installation guide for more info.

Scrapy also has support for bpython, and will try to use it where [Python is unavailable.

Through Scrapy’s settings you can configure it to use any one of ipython, bpython or the standard python shell,
regardless of which are installed. This is done by setting the SCRAPY_PYTHON_SHELL environment variable; or by
defining it in your scrapy.cfg:

[settings]
shell = bpython

3.6.2 Launch the shell

To launch the Scrapy shell you can use the shell command like this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

shell also works for local files. This can be handy if you want to play around with a local copy of a web page.
shell understands the following syntaxes for local files:

UNIX-style

scrapy shell ./path/to/file.html

scrapy shell ../other/path/to/file.html
scrapy shell /absolute/path/to/file.html

File URI
scrapy shell file:///absolute/path/to/file.html

Note: When using relative file paths, be explicit and prepend them with . / (or . . / when relevant). scrapy shell
index.html will not work as one might expect (and this is by design, not a bug).

Because shell favors HTTP URLs over File URIs, and index.html being syntactically similar to example.
com, shell will treat index .html as a domain name and trigger a DNS lookup error:

78 Capitulo 3. Basic concepts

https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/install.html
https://bpython-interpreter.org/
https://ipython.org/

Scrapy Documentation, Release 2.2.0

$ scrapy shell index.html

[... scrapy shell starts ...]

[... traceback ...]

twisted.internet.error.DNSLookupError: DNS lookup failed:

address 'index.html' not found: [Errno -5] No address associated with hostname.

shell will not test beforehand if a file called index.html exists in the current directory. Again, be explicit.

3.6.3 Using the shell

The Scrapy shell is just a regular Python console (or IPython console if you have it available) which provides some
additional shortcut functions for convenience.

Available Shortcuts

= shelp () - print a help with the list of available objects and shortcuts

» fetch(url[, redirect=True]) - fetch a new response from the given URL and update all rela-
ted objects accordingly. You can optionaly ask for HTTP 3xx redirections to not be followed by passing
redirect=False

= fetch (request) - fetch a new response from the given request and update all related objects accordingly.

» view (response) -open the given response in your local web browser, for inspection. This will add a <base>
tag to the response body in order for external links (such as images and style sheets) to display properly. Note,
however, that this will create a temporary file in your computer, which won’t be removed automatically.

Available Scrapy objects
The Scrapy shell automatically creates some convenient objects from the downloaded page, like the Response object
and the Selector objects (for both HTML and XML content).
Those objects are:
» crawler - the current Crawler object.

= spider - the Spider which is known to handle the URL, or a Spider object if there is no spider found for the
current URL

= request - a Request object of the last fetched page. You can modify this request using replace () or
fetch a new request (without leaving the shell) using the fetch shortcut.

= response - a Response object containing the last fetched page

= settings - the current Scrapy settings

3.6. Scrapy shell 79

https://ipython.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base

Scrapy Documentation, Release 2.2.0

3.6.4 Example of shell session

Here’s an example of a typical shell session where we start by scraping the https://scrapy.org page, and then proceed to
scrape the https://old.reddit.com/ page. Finally, we modify the (Reddit) request method to POST and re-fetch it getting
an error. We end the session by typing Ctrl-D (in Unix systems) or Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it, as those pages are not static and could
have changed by the time you test this. The only purpose of this example is to get you familiarized with how the
Scrapy shell works.

First, we launch the shell:

scrapy shell 'https://scrapy.org' —--nolog

Note: Remember to always enclose URLSs in quotes when running the Scrapy shell from the command line, otherwise
URLSs containing arguments (i.e. the & character) will not work.

On Windows, use double quotes instead:

scrapy shell "https://scrapy.org" —--nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the list of available objects and useful
shortcuts (you’ll notice that these lines all start with the [s] prefix):

[s] Available Scrapy objects:

[s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)

[s] crawler <scrapy.crawler.Crawler object at 0x7f07395dd690>

[s] item {}

[s] request <GET https://scrapy.org>

[s] response <200 https://scrapy.org/>

[s] settings <scrapy.settings.Settings object at 0x7£07395dd710>

[s] spider <DefaultSpider 'default' at 0x7£0735891690>

[s] Useful shortcuts:

[s] fetch(url[, redirect=True]) Fetch URL and update local objects (by default,
—redirects are followed)

[s] fetch (req) Fetch a scrapy.Request and update local objects
[s] shelp () Shell help (print this help)

[s] view (response) View response in a browser

>>>

After that, we can start playing with the objects:

>>> response.xpath('//title/text ()") .get ()

'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework'

’>>> fetch("https://old.reddit.com/")

>>> response.xpath('//title/text () ') .get ()
'reddit: the front page of the internet'

’>>> request = request.replace (method="POST")

’>>> fetch (request)

80 Capitulo 3. Basic concepts

https://scrapy.org
https://old.reddit.com/

Scrapy Documentation, Release 2.2.0

>>> response.status
404

>>> from pprint import pprint

>>> pprint (response.headers)

{"Accept-Ranges': ['bytes'],
'Cache-Control': ['max—-age=0, must-revalidate'],
'Content-Type': ['text/html; charset=UTF-8'],
'Date': ['Thu, 08 Dec 2016 16:21:19 GMT'],
'Server': ['snooserv'],
'Set—-Cookie': ['loid=KgNLouOV9SKMX4gbdn; Domain=reddit.com; Max-Age=63071999; Path=/;

— expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
'loidcreated=2016-12-08T16%3A21%3A19.4457; Domain=reddit.com; Max-

—Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
'loid=vi0ZVedNkxNWd1H7r7; Domain=reddit.com; Max-Age=63071999; Path=/;

— expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
'loidcreated=2016-12-08T16%3A21%3A19.459%; Domain=reddit.com; Max-—

—Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure'],

'Vary': ['accept-encoding'],

'Via': ['1l.1 varnish'],

'X-Cache': ['MISS'],

'X-Cache-Hits': ['0'],

'X-Content-Type-Options': ['nosniff'],

'X-Frame-Options': ['SAMEORIGIN'],

'X-Moose': ['majestic'],

'X-Served-By': ['cache—-cdg8730-CDG'],

'X-Timer': ['S1481214079.394283,VS0,VE159'],

'X-Ua-Compatible': ['IE=edge'],

'X-Xss—-Protection': ['l; mode=block']}

3.6.5 Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a certain point of your spider, if only to check
that response you expect is getting there.

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

import scrapy

class MySpider (scrapy.Spider) :
name = "myspider"
start_urls = [
"http://example.com",
"http://example.org",
"http://example.net",

def parse(self, response):
We want to inspect one specific response.
if ".org" in response.url:
from scrapy.shell import inspect_response

(continues on next page)

3.6. Scrapy shell 81

Scrapy Documentation, Release 2.2.0

(continued from previous page)

inspect_response (response, self)

Rest of parsing code.

When you run the spider, you will get something similar to this:

2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
—example.com> (referer: None)

2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
—example.org> (referer: None)

[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0Oxlel6b50>

>>> response.url
'http://example.org'

Then, you can check if the extraction code is working:

>>> response.xpath('//hl[@class="fn"]")

(]

Nope, it doesn’t. So you can open the response in your web browser and see if it’s the response you were expecting:

>>> view (response)
True

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the crawling:

>>> "D
2014-01-23 17:50:03-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://
—example.net> (referer: None)

Note that you can’t use the fetch shortcut here since the Scrapy engine is blocked by the shell. However, after you
leave the shell, the spider will continue crawling where it stopped, as shown above.

3.7 Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline which processes it through several components
that are executed sequentially.

Each item pipeline component (sometimes referred as just «Item Pipeline») is a Python class that implements a simple
method. They receive an item and perform an action over it, also deciding if the item should continue through the
pipeline or be dropped and no longer processed.

Typical uses of item pipelines are:
= cleansing HTML data
= validating scraped data (checking that the items contain certain fields)
= checking for duplicates (and dropping them)

= storing the scraped item in a database

82 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

3.7.1 Writing your own item pipeline

Each item pipeline component is a Python class that must implement the following method:

process_item (self, item, spider)
This method is called for every item pipeline component.

item is an item object, see Supporting All Item Types.
process_item () must either: return an item object, return a Deferred or raise a DropItem exception.
Dropped items are no longer processed by further pipeline components.
Parameters
= item (ifem object) — the scraped item
= spider (Spider object) — the spider which scraped the item
Additionally, they may also implement the following methods:

open_spider (self, spider)
This method is called when the spider is opened.

Parameters spider (Spider object) — the spider which was opened

close_spider (self, spider)
This method is called when the spider is closed.

Parameters spider (Spider object) — the spider which was closed

from crawler (cls, crawler)
If present, this classmethod is called to create a pipeline instance from a Crawler. It must return a new instance
of the pipeline. Crawler object provides access to all Scrapy core components like settings and signals; it is a
way for pipeline to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) — crawler that uses this pipeline
3.7.2 ltem pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetical pipeline that adjusts the price attribute for those items that do not
include VAT (price_excludes_vat attribute), and drops those items which don’t contain a price:

from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem
class PricePipeline:

vat_factor = 1.15

def process_item(self, item, spider):
adapter = ItemAdapter (item)
if adapter.get ('price'):
if adapter.get ('price_excludes_vat'):

adapter['price'] = adapter['price'] * self.vat_factor
return item
else:
raise Dropltem("Missing price in " % item)

3.7. Item Pipeline 83

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html

Scrapy Documentation, Release 2.2.0

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a single items. j1 file, containing one item
per line serialized in JSON format:

import json
from itemadapter import ItemAdapter
class JsonWriterPipeline:

def open_spider(self, spider):
self.file = open('items.jl', 'w')

def close_spider(self, spider):
self.file.close()

def process_item(self, item, spider):
line = json.dumps (ItemAdapter (item) .asdict()) + "\n"
self.file.write(line)
return item

Note: The purpose of JsonWriterPipeline is just to introduce how to write item pipelines. If you really want to store
all scraped items into a JSON file you should use the Feed exports.

Write items to MongoDB
In this example we’ll write items to MongoDB using pymongo. MongoDB address and database name are specified in
Scrapy settings; MongoDB collection is named after item class.

The main point of this example is to show how to use from crawler () method and how to clean up the resources
properly.:

import pymongo
from itemadapter import ItemAdapter

class MongoPipeline:
collection_name = 'scrapy_items'

def _ _init__ (self, mongo_uri, mongo_db) :
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db

@classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get ('MONGO_URI"),
mongo_db=crawler.settings.get ('MONGO_DATABASE', 'items')

def open_spider(self, spider):
self.client = pymongo.MongoClient (self.mongo_uri)
self.db = self.client[self.mongo_db]

(continues on next page)

84 Capitulo 3. Basic concepts

https://www.mongodb.com/
https://api.mongodb.com/python/current/

Scrapy Documentation, Release 2.2.0

(continued from previous page)

def close_spider(self, spider):
self.client.close()

def process_item(self, item, spider):
self.db[self.collection_name].insert_one (ItemAdapter (item) .asdict ())
return item

Take screenshot of item

This example demonstrates how to use coroutine syntax in the process_item () method.

This item pipeline makes a request to a locally-running instance of Splash to render a screenshot of the item URL.
After the request response is downloaded, the item pipeline saves the screenshot to a file and adds the filename to the
item.

import hashlib
from urllib.parse import quote

import scrapy
from itemadapter import ItemAdapter

class ScreenshotPipeline:
"""pipeline that uses Splash to render screenshot of
every Scrapy item."""

SPLASH_URL = "http://localhost:8050/render.png?url={;}"

async def process_item(self, item, spider):
adapter = ItemAdapter (item)
encoded_item_url = quote (adapter["url"])
screenshot_url = self.SPLASH_URL.format (encoded_item_url)
request = scrapy.Request (screenshot_url)
response = await spider.crawler.engine.download(request, spider)

if response.status != 200:
Error happened, return item.

return item

Save screenshot to file, filename will be hash of url.

url = adapter["url"]
url_hash = hashlib.md5 (url.encode ("utf8")) .hexdigest ()
filename = "{/}.png".format (url_hash)

with open(filename, "wb") as f:
f.write (response.body)

Store filename in item.
adapter["screenshot_filename"] = filename
return item

3.7. Item Pipeline 85

https://splash.readthedocs.io/en/stable/

Scrapy Documentation, Release 2.2.0

Duplicates filter

A filter that looks for duplicate items, and drops those items that were already processed. Let’s say that our items have
a unique id, but our spider returns multiples items with the same id:

from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem

class DuplicatesPipeline:

def _ init__ (self):
self.ids_seen = set ()

def process_item(self, item, spider):
adapter = ItemAdapter (item)
if adapter['id'] in self.ids_seen:
raise Dropltem("Duplicate item found: " % item)
else:
self.ids_seen.add(adapter['id'])
return item

3.7.3 Activating an ltem Pipeline component

To activate an Item Pipeline component you must add its class to the I TEM PIPELINES setting, like in the following
example:

ITEM_PIPELINES = {
'myproject.pipelines.PricePipeline': 300,
'myproject.pipelines.JsonWriterPipeline': 800,

The integer values you assign to classes in this setting determine the order in which they run: items go through from
lower valued to higher valued classes. It’s customary to define these numbers in the 0-1000 range.

3.8 Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is being able to store the scraped data
properly and, quite often, that means generating an «export file» with the scraped data (commonly called «export
feed») to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which allows you to generate feeds with the
scraped items, using multiple serialization formats and storage backends.

86 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

3.8.1 Serialization formats

For serializing the scraped data, the feed exports use the Item exporters. These formats are supported out of the box:

= JSON

= JSON lines
= CSV

= XML

But you can also extend the supported format through the FEED_EXPORTERS setting.

JSON

= Value for the format key in the FEEDS setting: json
= Exporter used: JsonItemExporter
» See this warning if you’re using JSON with large feeds.

JSON lines

= Value for the format key in the FEEDS setting: jsonlines

= Exporter used: JsonLinesItemExporter

Csv

= Value for the format key in the FEEDS setting: csv

= Exporter used: CsvItemExporter

= To specify columns to export and their order use FEED_EXPORT FIELDS. Other feed exporters can also use

this option, but it is important for CSV because unlike many other export formats CSV uses a fixed header.

XML
= Value for the format key in the FEEDS setting: xm1
= Exporter used: XmlItemExporter

Pickle

= Value for the format key in the FEEDS setting: pickle

= Exporter used: PickleltemExporter

3.8. Feed exports

87

Scrapy Documentation, Release 2.2.0

Marshal

= Value for the format key in the FEEDS setting: marshal

» Exporter used: MarshalltemExporter

3.8.2 Storages

When using the feed exports you define where to store the feed using one or multiple URIs (through the FEEDS
setting). The feed exports supports multiple storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:
» Local filesystem
= FTP
= §3 (requires botocore)
» Standard output

Some storage backends may be unavailable if the required external libraries are not available. For example, the S3
backend is only available if the botocore library is installed.

3.8.3 Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is being created. These parameters are:
= % (time) s - gets replaced by a timestamp when the feed is being created
= % (name) s - gets replaced by the spider name

Any other named parameter gets replaced by the spider attribute of the same name. For example, $ (site_id) s
would get replaced by the spider.site_id attribute the moment the feed is being created.

Here are some examples to illustrate:
= Store in FTP using one directory per spider:

e ftp://user:password@ftp.example.com/scraping/feeds/ % (name)s/ % (time)s.
json

= Store in S3 using one directory per spider:

* s3://mybucket/scraping/feeds/ % (name)s/ % (time)s. json

3.8.4 Storage backends

Local filesystem

The feeds are stored in the local filesystem.
= URIscheme: file
= Example URL: file:///tmp/export.csv
= Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if you specify an absolute path like /tmp/
export .csv. This only works on Unix systems though.

88 Capitulo 3. Basic concepts

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://github.com/boto/botocore
https://github.com/boto/botocore

Scrapy Documentation, Release 2.2.0

FTP

The feeds are stored in a FTP server.
= URI scheme: ftp
= Example URL: ftp://user:pass@ftp.example.com/path/to/export.csv
= Required external libraries: none

FTP supports two different connection modes: active or passive. Scrapy uses the passive connection mode by default.
To use the active connection mode instead, set the FEED_STORAGE_FTP_ACTIVE setting to True.

S3

The feeds are stored on Amazon S3.
= URI scheme: s3
= Example URIs:
¢ s3://mybucket/path/to/export.csv
* s3://aws_key:aws_secret@mybucket/path/to/export.csv
= Required external libraries: botocore
The AWS credentials can be passed as user/password in the URI, or they can be passed through the following settings:
s AWS_ACCESS_KEY ID
m AWS_SECRET_ACCESS_KEY
You can also define a custom ACL for exported feeds using this setting:

s FEED STORAGE_S3 ACL

Google Cloud Storage (GCS)

The feeds are stored on Google Cloud Storage.

= URI scheme: gs

= Example URIs:

* gs://mybucket/path/to/export.csv

= Required external libraries: google-cloud-storage.
For more information about authentication, please refer to Google Cloud documentation.
You can set a Project ID and Access Control List (ACL) through the following settings:

m FEED STORAGE_GCS_ACL

» GCS_PROJECT_ID

3.8. Feed exports 89

https://stackoverflow.com/a/1699163
https://aws.amazon.com/s3/
https://github.com/boto/botocore
https://cloud.google.com/storage/
https://cloud.google.com/storage/docs/reference/libraries#client-libraries-install-python
https://cloud.google.com/docs/authentication/production

Scrapy Documentation, Release 2.2.0

Standard output

The feeds are written to the standard output of the Scrapy process.
= URI scheme: stdout
= Example URI: stdout:

= Required external libraries: none

3.8.5 Settings

These are the settings used for configuring the feed exports:
» FEEDS (mandatory)
s FEED EXPORT _ENCODING
s F'EED STORE_EMPTY
s 'EED EXPORT _FIELDS
» FEED EXPORI_INDENT
s FEED STORAGES
s 'EED STORAGE _FTP_ACTIVE
m FEED STORAGE_S3 _ACL

s FEED EXPORTERS

FEEDS

New in version 2.1.
Default: {}

A dictionary in which every key is a feed URI (or a pathlib.Path object) and each value is a nested dictionary
containing configuration parameters for the specific feed. This setting is required for enabling the feed export feature.

See Storage backends for supported URI schemes.

For instance:

{

'items.json': {
'format': 'Jjson',
'encoding': 'utf8',

'store_empty': False,
'fields': None,

'indent': 4,

}I

' /home/user/documents/items.xml': {
'format': 'xml',
'fields': ['name', 'price'l,
'encoding': 'latinl',
'indent': 8,

}I

pathlib.Path('items.csv'): {
'format': 'csv',

(continues on next page)

90

Capitulo 3. Basic concepts

https://docs.python.org/3/library/pathlib.html#pathlib.Path

Scrapy Documentation, Release 2.2.0

(continued from previous page)

'fields': ['price', 'name'],
I
}

The following is a list of the accepted keys and the setting that is used as a fallback value if that key is not provided
for a specific feed definition.

» format: the serialization format to be used for the feed. See Serialization formats for possible values. Manda-
tory, no fallback setting

» encoding: falls back to FEED EXPORT ENCODING
s fields: falls back to FEED EXPORT FIELDS
= indent: falls back to FEED_EXPORT_TINDENT

» store_empty: falls back to FEED_STORE_EMPTY

FEED_EXPORT_ENCODING

Default: None
The encoding to be used for the feed.

If unset or set to None (default) it uses UTF-8 for everything except JSON output, which uses safe numeric encoding
(\uxxXxXX sequences) for historic reasons.

Use ut £-8 if you want UTF-8 for JSON too.

FEED_EXPORT_FIELDS

Default: None
A list of fields to export, optional. Example: FEED_EXPORT_FIELDS = ["foo", "bar", "baz"].
Use FEED_EXPORT_FIELDS option to define fields to export and their order.

When FEED_EXPORT_FIELDS is empty or None (default), Scrapy uses the fields defined in item objects yielded by
your spider.

If an exporter requires a fixed set of fields (this is the case for CSV export format) and FEED_EXPORT_FIELDS is
empty or None, then Scrapy tries to infer field names from the exported data - currently it uses field names from the
first item.

FEED_EXPORT_INDENT

Default: 0

Amount of spaces used to indent the output on each level. If FEED_EXPORT_INDENT is a non-negative integer, then
array elements and object members will be pretty-printed with that indent level. An indent level of O (the default), or
negative, will put each item on a new line. None selects the most compact representation.

Currently implemented only by JsonItemExporter and XmlItemExporter, i.e. when you are exporting to
.Jjsonor .xml.

3.8. Feed exports 91

Scrapy Documentation, Release 2.2.0

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (i.e. feeds with no items).
FEED_STORAGES

Default: {}

A dict containing additional feed storage backends supported by your project. The keys are URI schemes and the
values are paths to storage classes.

FEED_STORAGE_FTP_ACTIVE

Default: False

Whether to use the active connection mode when exporting feeds to an FTP server (True) or use the passive connec-
tion mode instead (False, default).

For information about FTP connection modes, see What is the difference between active and passive FTP?.

FEED_STORAGE_S3_ACL

Default: ' ' (empty string)
A string containing a custom ACL for feeds exported to Amazon S3 by your project.
For a complete list of available values, access the Canned ACL section on Amazon S3 docs.

FEED_STORAGES_BASE

Default:

{
'': 'scrapy.extensions.feedexport.FileFeedStorage',
'file': 'scrapy.extensions.feedexport.FileFeedStorage',
'stdout': 'scrapy.extensions.feedexport.StdoutFeedStorage',
's3': 'scrapy.extensions.feedexport.S3FeedStorage',
'ftp': 'scrapy.extensions.feedexport.FTPFeedStorage',

}

A dict containing the built-in feed storage backends supported by Scrapy. You can disable any of these backends by
assigning None to their URI scheme in FEED_STORAGES. E.g., to disable the built-in FTP storage backend (without
replacement), place this in your settings.py:

FEED_STORAGES = {
'ftp': None,
}

92 Capitulo 3. Basic concepts

https://stackoverflow.com/a/1699163
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

Scrapy Documentation, Release 2.2.0

FEED_EXPORTERS

Default: {}

A dict containing additional exporters supported by your project. The keys are serialization formats and the values are
paths to /tem exporter classes.

FEED_EXPORTERS_BASE

Default:

{
'json': 'scrapy.exporters.JsonltemExporter',
'jsonlines': 'scrapy.exporters.JsonLinesItemExporter',
'Jj1l': 'scrapy.exporters.JsonlLinesItemExporter',
'csv': 'scrapy.exporters.CsvItemExporter',
'xml': 'scrapy.exporters.XmlItemExporter',
'marshal': 'scrapy.exporters.MarshalltemExporter',
'pickle': 'scrapy.exporters.PicklelItemExporter',

A dict containing the built-in feed exporters supported by Scrapy. You can disable any of these exporters by assig-
ning None to their serialization format in FEED EXPORTERS. E.g., to disable the built-in CSV exporter (without
replacement), place this in your settings.py:

FEED_EXPORTERS = {
'csv': None,

3.9 Requests and Responses

Scrapy uses Request and Response objects for crawling web sites.

Typically, Request objects are generated in the spiders and pass across the system until they reach the Downloader,
which executes the request and returns a Re sponse object which travels back to the spider that issued the request.

Both Request and Response classes have subclasses which add functionality not required in the base classes.
These are described below in Request subclasses and Response subclasses.

3.9.1 Request objects

class scrapy.http.Request (*args, **kwargs)
A Request object represents an HTTP request, which is usually generated in the Spider and executed by the
Downloader, and thus generating a Response.

Parameters
» url (string)—the URL of this request
If the URL is invalid, a ValueError exception is raised.

» callback (callable) - the function that will be called with the response of this request
(once it’s downloaded) as its first parameter. For more information see Passing additio-
nal data to callback functions below. If a Request doesn’t specify a callback, the spider’s

3.9. Requests and Responses 93

https://docs.python.org/3/library/exceptions.html#ValueError

Scrapy Documentation, Release 2.2.0

parse () method will be used. Note that if exceptions are raised during processing, errback
is called instead.

method (st ring) —the HTTP method of this request. Defaults to 'GET'.

meta (dict)-the initial values for the Request . met a attribute. If given, the dict passed
in this parameter will be shallow copied.

body (str or unicode) - the request body. If a unicode is passed, then it’s encoded
to str using the encoding passed (which defaults to ut £-8). If body is not given, an
empty string is stored. Regardless of the type of this argument, the final value stored will be
a str (never unicode or None).

headers (dict) — the headers of this request. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers). If None is passed as value, the HTTP
header will not be sent at all.

cookies (dict or 1ist)-therequestcookies. These can be sent in two forms.

1. Using a dict:

request_with_cookies = Request (url="http://www.example.com",
cookies={'"'currency': 'USD',
—'country': 'UY'})

2. Using a list of dicts:

request_with_cookies = Request (url="http://www.example.com",
cookies=[{'name': 'currency',
'value': 'USD',
'domain': 'example.com',
'path': '/currency'}])

The latter form allows for customizing the domain and path attributes of the cookie. This
is only useful if the cookies are saved for later requests. When some site returns cookies (in
a response) those are stored in the cookies for that domain and will be sent again in future
requests. That’s the typical behaviour of any regular web browser.

To create a request that does not send stored cookies and does not store received cookies,
set the dont_merge_cookies key to True in request . meta.

Example of a request that sends manually-defined cookies and ignores cookie storage:

Request (
url="http://www.example.com",
cookies={'currency': 'USD', 'country': 'UY'},
meta={'dont_merge_cookies': True},

For more info see CookiesMiddleware.

encoding (string) — the encoding of this request (defaults to 'ut£-8"). This enco-
ding will be used to percent-encode the URL and to convert the body to st r (if given as
unicode).

priority (int) — the priority of this request (defaults to 0). The priority is used by the
scheduler to define the order used to process requests. Requests with a higher priority value
will execute earlier. Negative values are allowed in order to indicate relatively low-priority.

94

Capitulo 3. Basic concepts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Scrapy Documentation, Release 2.2.0

= dont_filter (boolean) - indicates that this request should not be filtered by the sche-
duler. This is used when you want to perform an identical request multiple times, to ignore
the duplicates filter. Use it with care, or you will get into crawling loops. Default to False.

» errback (callable) — a function that will be called if any exception was raised while
processing the request. This includes pages that failed with 404 HTTP errors and such. It
receives a Failure as first parameter. For more information, see Using errbacks to catch
exceptions in request processing below.

Changed in version 2.0: The callback parameter is no longer required when the errback
parameter is specified.

» flags (1ist)— Flags sent to the request, can be used for logging or similar purposes.

» cb_kwargs (dict)— A dict with arbitrary data that will be passed as keyword arguments
to the Request’s callback.

url
A string containing the URL of this request. Keep in mind that this attribute contains the escaped URL, so
it can differ from the URL passed in the __init___ method.

This attribute is read-only. To change the URL of a Request use replace ().

method
A string representing the HTTP method in the request. This is guaranteed to be uppercase. Example:
"GET", "POST", "PUT", etc

headers
A dictionary-like object which contains the request headers.

body
A str that contains the request body.

This attribute is read-only. To change the body of a Request use replace ().

meta
A dict that contains arbitrary metadata for this request. This dict is empty for new Requests, and is usually
populated by different Scrapy components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys recognized by Scrapy.

This dict is shallow copied when the request is cloned using the copy () or replace () methods, and
can also be accessed, in your spider, from the response .meta attribute.

cb_kwargs
A dictionary that contains arbitrary metadata for this request. Its contents will be passed to the Request’s
callback as keyword arguments. It is empty for new Requests, which means by default callbacks only get
a Response object as argument.

This dict is shallow copied when the request is cloned using the copy () or replace () methods, and
can also be accessed, in your spider, from the response.cb_kwargs attribute.

In case of a failure to process the request, this dict can be accessed as failure.request.cb_kwargs
in the request’s errback. For more information, see Accessing additional data in errback functions.

copy ()
Return a new Request which is a copy of this Request. See also: Passing additional data to callback

functions.

replace ([url, method, headers, body, cookies, meta, flags, encoding, priority, dont_filter, callback,
errback, cb_kwargs])
Return a Request object with the same members, except for those members given new values by whiche-

3.9. Requests and Responses 95

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/copy.html

Scrapy Documentation, Release 2.2.0

ver keyword arguments are specified. The Request.ch_kwargs and Request .meta attributes are
shallow copied by default (unless new values are given as arguments). See also Passing additional data to
callback functions.

classmethod from_curl (curl_command, ignore_unknown_options=True, **kwargs)
Create a Request object from a string containing a cURL command. It populates the HTTP method, the
URL, the headers, the cookies and the body. It accepts the same arguments as the Request class, taking
preference and overriding the values of the same arguments contained in the cURL command.

Unrecognized options are ignored by default. To raise an error when finding unknown options call this
method by passing ignore_unknown_options=False.

Caution: Using from curl () from Request subclasses, such as JSONRequest,
or XmlRpcRequest, as well as having downloader middlewares and spider middlewa-
res enabled, such as DefaultHeadersMiddleware, UserAgentMiddleware, oOr
HttpCompressionMiddleware, may modify the Request object.

To translate a cURL command into a Scrapy request, you may use curl2scrapy.

Passing additional data to callback functions

The callback of a request is a function that will be called when the response of that request is downloaded. The callback
function will be called with the downloaded Re sponse object as its first argument.

Example:

def parse_pagel (self, response):
return scrapy.Request ("http://www.example.com/some_page.html",
callback=self.parse_page2)

def parse_page2 (self, response):
this would log http://www.example.com/some_page.html
self.logger.info ("Visited ", response.url)

In some cases you may be interested in passing arguments to those callback functions so you can receive the arguments
later, in the second callback. The following example shows how to achieve this by using the Request.ch_kwargs
attribute:

def parse(self, response):
request = scrapy.Request ('http://www.example.com/index.html',
callback=self.parse_page2,
cb_kwargs=dict (main_url=response.url))
request.cb_kwargs['foo'] = 'bar' # add more arguments for the callback
yield request

def parse_page2(self, response, main_url, foo):
yield dict(
main_url=main_url,
other_url=response.url,
foo=foo,

Caution: Request.ch_kwargs was introduced in version 1. 7. Prior to that, using Request . meta was re-
commended for passing information around callbacks. After 1.7, Request.cb_kwargs became the preferred

96 Capitulo 3. Basic concepts

https://curl.haxx.se/
https://michael-shub.github.io/curl2scrapy/

Scrapy Documentation, Release 2.2.0

way for handling user information, leaving Reque st . met a for communication with components like middlewa-
res and extensions.

Using errbacks to catch exceptions in request processing

The errback of a request is a function that will be called when an exception is raise while processing it.
It receives a Failure as first parameter and can be used to track connection establishment timeouts, DNS errors etc.

Here’s an example spider logging all errors and catching some specific errors if needed:

import scrapy
from scrapy.spidermiddlewares.httperror import HttpError
from twisted.internet.error import DNSLookupError

from twisted.internet.error import TimeoutError, TCPTimedOutError

class ErrbackSpider (scrapy.Spider) :

name = "errback_example"

start_urls = [
"http://www.httpbin.org/", # HTTP 200 expected
"http://www.httpbin.org/status/404", # Not found error
"http://www.httpbin.org/status/500", # server issue
"http://www.httpbin.org:12345/", # non-responding host, timeout,,

—expected

"http://www.httphttpbinbin.org/", # DNS error expected

def start_requests(self):
for u in self.start_urls:
yield scrapy.Request (u, callback=self.parse_httpbin,
errback=self.errback_httpbin,
dont_filter=True)

def parse_httpbin(self, response):
self.logger.info ('Got successful response from {}'.format (response.url))
do something useful here...

def errback_httpbin(self, failure):
log all failures
self.logger.error (repr (failure))

in case you want to do something special for some errors,
you may need the failure's type:

if failure.check (HttpError) :
these exceptions come from HttpError spider middleware
you can get the non-200 response
response = failure.value.response
self.logger.error ('HttpError on ¢s', response.url)

elif failure.check (DNSLookupError) :
this is the original request
request = failure.request
self.logger.error ('DNSLookupError on %s', request.url)

(continues on next page)

3.9. Requests and Responses 97

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 2.2.0

(continued from previous page)

elif failure.check (TimeoutError, TCPTimedOutError) :
request = failure.request
self.logger.error ('TimeoutError on ', request.url)

Accessing additional data in errback functions

In case of a failure to process the request, you may be interested in accessing arguments to the callback functions so
you can process further based on the arguments in the errback. The following example shows how to achieve this by
using Failure.request.cb_kwargs:

def parse(self, response):
request = scrapy.Request ('http://www.example.com/index.html',
callback=self.parse_page2,
errback=self.errback_page2,
cb_kwargs=dict (main_url=response.url))
yield request

def parse_page2(self, response, main_url):
pass

def errback_page2(self, failure):
yield dict (
main_url=failure.request.cb_kwargs|['main_url'],

3.9.2 Request.meta special keys
The Request . meta attribute can contain any arbitrary data, but there are some special keys recognized by Scrapy
and its built-in extensions.
Those are:

m dont_redirect

m dont_retry

m handle httpstatus_1list

m handle httpstatus_all

» dont_merge_cookies

" cookiejar

m dont_cache

m redirect_reasons

m redirect_urls

» pindaddress

m dont_obey_robotstxt

» download_timeout

» download maxsize

m download latency

98 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

m download_ fail_ on_dataloss

" Proxy

» ftp_user (See FTP_USER for more info)

» ftp_password (See FTP_PASSWORD for more info)
m referrer_policy

" max_retry_times

bindaddress

The IP of the outgoing IP address to use for the performing the request.

download_timeout

The amount of time (in secs) that the downloader will wait before timing out. See also: DOWNLOAD_TIMEOUT.

download_latency
The amount of time spent to fetch the response, since the request has been started, i.e. HTTP message sent over the

network. This meta key only becomes available when the response has been downloaded. While most other meta keys
are used to control Scrapy behavior, this one is supposed to be read-only.

download_fail_on_dataloss

Whether or not to fail on broken responses. See: DOWNLOAD_FAIIL _ON_DATALOSS.

max_retry_times

The meta key is used set retry times per request. When initialized, the max_retry_ times meta key takes higher
precedence over the RETRY TIMES setting.

3.9.3 Stopping the download of a Response

Raising a StopDownload exception from a bytes_received signal handler will stop the download of a given
response. See the following example:

import scrapy

class StopSpider (scrapy.Spider) :

name = "stop"
start_urls = ["https://docs.scrapy.org/en/latest/"]
@classmethod
def from crawler(cls, crawler):
spider = super().from_crawler (crawler)

crawler.signals.connect (spider.on_bytes_received, signal=scrapy.signals.bytes_
—received)
return spider

(continues on next page)

3.9. Requests and Responses 99

Scrapy Documentation, Release 2.2.0

(continued from previous page)

def parse(self, response):
'last_chars' show that the full response was not downloaded
yield {"len": len(response.text), "last_chars": response.text[-40:]}

def on_bytes_received(self, data, request, spider):
raise scrapy.exceptions.StopDownload (fail=False)

which produces the following output:

2020-05-19 17:26:12 [scrapy.core.engine] INFO: Spider opened

2020-05-19 17:26:12 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/
—min), scraped 0 items (at 0 items/min)

2020-05-19 17:26:13 [scrapy.core.downloader.handlers.httpll] DEBUG: Download stopped,,
—for <GET https://docs.scrapy.org/en/latest/> from signal handler StopSpider.on_
—bytes_received

2020-05-19 17:26:13 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://docs.
—scrapy.org/en/latest/> (referer: None) ['download_ stopped']

2020-05-19 17:26:13 [scrapy.core.scraper] DEBUG: Scraped from <200 https://docs.
—»scrapy.org/en/latest/>

{'len': 279, 'last_chars': 'dth, initial-scale=1.0">\n \n <title>Scr'}

2020-05-19 17:26:13 [scrapy.core.engine] INFO: Closing spider (finished)

By default, resulting responses are handled by their corresponding errbacks. To call their callback instead, like in this
example, pass fail=False tothe StopDownload exception.

3.9.4 Request subclasses

Here is the list of built-in Reque st subclasses. You can also subclass it to implement your own custom functionality.

FormRequest objects

The FormRequest class extends the base Reque st with functionality for dealing with HTML forms. It uses Ixml.html
forms to pre-populate form fields with form data from Response objects.

class scrapy.http.FormRequest (url[,forma’ata,])
The FormRequest class adds a new keyword parameter tothe __init__ method. The remaining arguments
are the same as for the Request class and are not documented here.

Parameters formdata (dict or iterable of tuples) —is a dictionary (or iterable of
(key, value) tuples) containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in addition to the standard Reque st methods:

classmethod from response (response[, formname=None, formid=None, formnumber=0, form-
data=None, formxpath=None, formcss=None, clickdata=None,

dont_click=False, ...])
Returns a new FormRequest object with its form field values pre-populated with those found in

the HTML <form> element contained in the given response. For an example see Using FormRe-
quest.from_response() to simulate a user login.

The policy is to automatically simulate a click, by default, on any form control that looks clickable, like
a <input type="submit">. Even though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For example, when working with forms

100 Capitulo 3. Basic concepts

https://lxml.de/lxmlhtml.html#forms
https://lxml.de/lxmlhtml.html#forms
https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

that are filled and/or submitted using javascript, the default from response () behaviour may not be
the most appropriate. To disable this behaviour you can set the dont__c1ick argument to True. Also, if
you want to change the control clicked (instead of disabling it) you can also use the c1ickdata argument.

Caution: Using this method with select elements which have leading or trailing whitespace in the
option values will not work due to a bug in Ixml, which should be fixed in 1xml 3.8 and above.

Parameters

= response (Response object) — the response containing a HTML form which will be
used to pre-populate the form fields

» formname (string) — if given, the form with name attribute set to this value will be
used.

» formid (string) - if given, the form with id attribute set to this value will be used.
» formxpath (string)—if given, the first form that matches the xpath will be used.
» formess (string) —if given, the first form that matches the css selector will be used.

= formnumber (integer) — the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

= formdata (dict) — fields to override in the form data. If a field was already present in
the response <form> element, its value is overridden by the one passed in this parameter.
If a value passed in this parameter is None, the field will not be included in the request,
even if it was present in the response <form> element.

» clickdata (dict) — attributes to lookup the control clicked. If it’s not given, the form
data will be submitted simulating a click on the first clickable element. In addition to html
attributes, the control can be identified by its zero-based index relative to other submittable
inputs inside the form, via the nr attribute.

= dont_click (boolean)— If True, the form data will be submitted without clicking in
any element.
The other parameters of this class method are passed directly to the FormRequest __init__ method.
New in version 0.10.3: The formname parameter.
New in version 0.17: The formxpath parameter.
New in version 1.1.0: The formcss parameter.

New in version 1.1.0: The formid parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of key-value fields, you can return a
FormRequest object (from your spider) like this:

return [FormRequest (url="http://www.example.com/post/action",
formdata={'name': 'John Doe', 'age': '27'},
callback=self.after_post)]

3.9. Requests and Responses 101

https://bugs.launchpad.net/lxml/+bug/1665241
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input type="hidden"> elements, such
as session related data or authentication tokens (for login pages). When scraping, you’ll want these fields to be au-
tomatically pre-populated and only override a couple of them, such as the user name and password. You can use the
FormRequest . from _response () method for this job. Here’s an example spider which uses it:

import scrapy

def authentication_failed(response):
TODO: Check the contents of the response and return True if it failed
or False 1if it succeeded.
pass

class LoginSpider (scrapy.Spider):
name = 'example.com'
start_urls = ['http://www.example.com/users/login.php']

def parse(self, response):
return scrapy.FormRequest.from_response (
response,
formdata={'username': 'john', 'password': 'secret'},
callback=self.after_login

def after_login(self, response):
if authentication_failed(response):
self.logger.error ("Login failed")
return

continue scraping with authenticated session...

JsonRequest

The JsonRequest class extends the base Request class with functionality for dealing with JSON requests.

class scrapy.http.JsonRequest (url[, ... data, dumps_kwargs])
The JsonRequest class adds two new keyword parameters to the ___init__ method. The remaining argu-
ments are the same as for the Request class and are not documented here.

Using the JsonRequest will set the Content-Type headerto application/json and Accept header
to application/Jjson, text/javascript, x/x; g=0.01

Parameters

» data (JSON serializable object) —is any JSON serializable object that needs
to be JSON encoded and assigned to body. if Request.body argument is provided this
parameter will be ignored. if Request . body argument is not provided and data argument
is provided Request .method will be setto 'POST' automatically.

» dumps_kwargs (dict)— Parameters that will be passed to underlying json . dumps ()
method which is used to serialize data into JSON format.

102 Capitulo 3. Basic concepts

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/json.html#json.dumps

Scrapy Documentation, Release 2.2.0

JsonRequest usage example

Sending a JSON POST request with a JSON payload:

data = {
'namel': 'valuel',
'name2': 'value2',

}
yield JsonRequest (url='http://www.example.com/post/action', data=data)

3.9.5 Response objects

class scrapy.http.Response (*args, **kwargs)
A Response object represents an HTTP response, which is usually downloaded (by the Downloader) and fed
to the Spiders for processing.

Parameters
= url (string)—the URL of this response
» status (integer) —the HTTP status of the response. Defaults to 200.

= headers (dict) — the headers of this response. The dict values can be strings (for single
valued headers) or lists (for multi-valued headers).

= body (bytes) — the response body. To access the decoded text as str you can use
response.text from an encoding-aware Response subclass, such as Text Response.

» flags (11ist)—isalist containing the initial values for the Response. f1ags attribute.
If given, the list will be shallow copied.

= request (scrapy.http.Request) — the initial value of the Response. request
attribute. This represents the Reque st that generated this response.

» certificate (twisted.internet.ssl.Certificate)— an objectrepresenting
the server’s SSL certificate.

= ip address (ipaddress.IPv4Address or ipaddress.IPv6Address) — The
IP address of the server from which the Response originated.

New in version 2.1.0: The ip_address parameter.

url
A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use replace ().

status
An integer representing the HTTP status of the response. Example: 200, 404.

headers
A dictionary-like object which contains the response headers. Values can be accessed using get () to
return the first header value with the specified name or get1ist () to return all header values with the
specified name. For example, this call will give you all cookies in the headers:

response.headers.getlist ('Set-Cookie')

body
The body of this Response. Keep in mind that Response.body is always a bytes object. If you want the
unicode version use TextResponse. text (only available in Text Response and subclasses).

3.9. Requests and Responses 103

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://twistedmatrix.com/documents/current/api/twisted.internet.ssl.Certificate.html
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv4Address
https://docs.python.org/3/library/ipaddress.html#ipaddress.IPv6Address

Scrapy Documentation, Release 2.2.0

This attribute is read-only. To change the body of a Response use replace ().

request
The Request object that generated this response. This attribute is assigned in the Scrapy engine, after the
response and the request have passed through all Downloader Middlewares. In particular, this means that:

= HTTP redirections will cause the original request (to the URL before redirection) to be assigned to
the redirected response (with the final URL after redirection).

= Response.request.url doesn’t always equal Response.url

= This attribute is only available in the spider code, and in the Spider Middlewares, but not in Downloa-
der Middlewares (although you have the Request available there by other means) and handlers of the
response_downloaded signal.

meta
A shortcut to the Request . meta attribute of the Response. request object (i.e. self.request.
meta).

Unlike the Response. request attribute, the Response . met a attribute is propagated along redirects
and retries, so you will get the original Request . meta sent from your spider.

See also:
Request .met a attribute

cb_kwargs
New in version 2.0.

A shortcut to the Request.cb_kwargs attribute of the Response. request object (i.e. self.
request.cb_kwargs).

Unlike the Response. request attribute, the Response. cb_kwargs attribute is propagated along
redirects and retries, so you will get the original Request . ch_kwargs sent from your spider.

See also:
Request.ch_ kwargs attribute

flags
A list that contains flags for this response. Flags are labels used for tagging Responses. For example:
'cached', 'redirected”, etc. And they’re shown on the string representation of the Response
(__str__ method) which is used by the engine for logging.

certificate
A twisted.internet.ssl.Certificate object representing the server’s SSL certificate.

Only populated for https responses, None otherwise.

ip_address
New in version 2.1.0.

The IP address of the server from which the Response originated.

This attribute is currently only populated by the HTTP 1.1 download handler, i.e. for http (s) responses.
For other handlers, ip_address is always None.

copy ()
Returns a new Response which is a copy of this Response.

replace ([url, status, headers, body, request, flags, cls])
Returns a Response object with the same members, except for those members given new values by whi-
chever keyword arguments are specified. The attribute Response.meta is copied by default.

104

Capitulo 3. Basic concepts

https://twistedmatrix.com/documents/current/api/twisted.internet.ssl.Certificate.html

Scrapy Documentation, Release 2.2.0

urlijoin (url)
Constructs an absolute url by combining the Response’s ur1 with a possible relative url.

This is a wrapper over urljoin (), it’s merely an alias for making this call:

urllib.parse.urljoin (response.url, url)

follow (url, callback=None, method='GET', headers=None, body=None, cookies=None, me-
ta=None, encoding="utf-8', priority=0, dont_filter=False, errback=None, cb_kwargs=None,

flags=None)
Return a Request instance to follow a link url. It accepts the same arguments as Request.

__init__ method, but url can be a relative URL or a scrapy.link.Link object, not only an
absolute URL.

TextResponse provides a follow () method which supports selectors in addition to absolute/relative
URLSs and Link objects.

New in version 2.0: The flags parameter.

follow_all (urls, callback=None, method='GET', headers=None, body=None, cookies=None,
meta=None, encoding='"utf-8', priority=0, dont_filter=False, errback=None,
cb_kwargs=None, flags=None)
New in version 2.0.
Return an iterable of Request instances to follow all links in urls. It accepts the same arguments as
Request.__init__ method, but elements of urls can be relative URLs or Link objects, not only
absolute URLSs.

TextResponse provides a follow_all () method which supports selectors in addition to absolu-
te/relative URLs and Link objects.

3.9.6 Response subclasses

Here is the list of available built-in Response subclasses. You can also subclass the Response class to implement your
own functionality.

TextResponse objects

class scrapy.http.TextResponse (url[, encoding[,]])
TextResponse objects adds encoding capabilities to the base Response class, which is meant to be used
only for binary data, such as images, sounds or any media file.

TextResponse objects support a new ___init__ method argument, in addition to the base Response
objects. The remaining functionality is the same as for the Response class and is not documented here.

Parameters encoding (string) — is a string which contains the encoding to use for this res-
ponse. If you create a TextResponse object with a unicode body, it will be encoded using
this encoding (remember the body attribute is always a string). If encoding is None (default
value), the encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition to the standard Response ones:

text
Response body, as unicode.

The same as response.body.decode (response.encoding), but the result is cached after the
first call, so you can access response . text multiple times without extra overhead.

3.9. Requests and Responses 105

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urljoin

Scrapy Documentation, Release 2.2.0

Note: unicode (response.body) is not a correct way to convert response body to unicode: you
would be using the system default encoding (typically ascii) instead of the response encoding.

encoding
A string with the encoding of this response. The encoding is resolved by trying the following mechanisms,
in order:

1. the encoding passed inthe __init__ method encoding argument

2. the encoding declared in the Content-Type HTTP header. If this encoding is not valid (i.e. unknown),
it is ignored and the next resolution mechanism is tried.

3. the encoding declared in the response body. The TextResponse class doesn’t provide any special
functionality for this. However, the Htm1Response and Xm1Response classes do.

4. the encoding inferred by looking at the response body. This is the more fragile method but also the
last one tried.

selector
A Selector instance using the response as target. The selector is lazily instantiated on first access.

TextResponse objects support the following methods in addition to the standard Response ones:

xpath (query)
A shortcut to TextResponse.selector.xpath (query):

’response.xpath(’//p')

css (query)
A shortcut to TextResponse.selector.css (query):

’ response.css('p')

follow (url, callback=None, method='GET', headers=None, body=None, cookies=None, me-
ta=None, encoding=None, priority=0, dont_filter=False, errback=None, cb_kwargs=None,
flags=None)
Return a Request instance to follow a link url. It accepts the same arguments as Request.
__init__ method, but url can be not only an absolute URL, but also

= arelative URL
= a Link object, e.g. the result of Link Extractors
m a Selector object fora <link> or <a> element, e.g. response.css('a.my_link') [0]

= an attribute Selector (not SelectorList), e.g. response.css('a::attr (href) ') [0] or
response.xpath ('//img/@src") [0]

See A shortcut for creating Requests for usage examples.

follow_all (urls=None, callback=None, method='GET', headers=None, body=None, co-
okies=None, meta=None, encoding=None, priority=0, dont_filter=False, errback=None,

cb_kwargs=None, flags=None, css=None, xpath=None)
A generator that produces Request instances to follow all links in urls. It accepts the same arguments

as the Request’s __init___ method, except that each urls element does not need to be an absolute
URL, it can be any of the following:

= arelative URL

= a Link object, e.g. the result of Link Extractors

106 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

m a Selector object fora <link> or <a> element, e.g. response.css('a.my_link') [0]

= an attribute Selector (not SelectorList), e.g. response.css('a::attr (href) ') [0] or
response.xpath ('//img/@src') [0]

In addition, css and xpath arguments are accepted to perform the link extraction within the
follow_all method (only one of urls, css and xpath is accepted).

Note that when passing a SelectorList as argument for the urls parameter or using the css or
xpath parameters, this method will not produce requests for selectors from which links cannot be obtai-
ned (for instance, anchor tags without an hre £ attribute)

json ()
New in version 2.2.

Deserialize a JSON document to a Python object.

Returns a Python object from deserialized JSON document. The result is cached after the first call.

HtmlIResponse objects

class scrapy.http.HtmlResponse (url[,])
The Html1Response class is a subclass of TextResponse which adds encoding auto-discovering support
by looking into the HTML meta http-equiv attribute. See Text Response.encoding.

XmlIResponse objects

class scrapy.http.XmlResponse (url[,])
The XmlResponse class is a subclass of TextResponse which adds encoding auto-discovering support by
looking into the XML declaration line. See TextResponse.encoding.

3.10 Link Extractors

A link extractor is an object that extracts links from responses.

The __init__ method of LxmILinkExtractor takes settings that determine which links may be extrac-
ted. LxmlLinkExtractor.extract_links returns a list of matching scrapy.link.Link objects from
a Response object.

Link extractors are used in CrawlSpider spiders through a set of Rule objects. You can also use link extractors in
regular spiders.

3.10.1 Link extractor reference

The link extractor class is scrapy. linkextractors.lxmlhtml.LxmlLinkExtractor.Forconvenience it
can also be imported as scrapy.linkextractors.LinkExtractor:

from scrapy.linkextractors import LinkExtractor

3.10. Link Extractors 107

https://www.w3schools.com/TAGS/att_meta_http_equiv.asp

Scrapy Documentation, Release 2.2.0

LxmlILinkExtractor

class scrapy.linkextractors.lxmlhtml.LxmlLinkExtractor (allow=(), deny=(),

LxmlLinkExtractor is the recommended link extractor with handy filtering options. It is implemented using

allow_domains=(),
deny_domains=(),
deny_extensions=None,
restrict_xpaths=(), res-
trict_css=(), tags='a’, 'area’,
attrs="href’, canonicali-
ze=False, unique=True,
process_value=None,
strip=True)

Ixml’s robust HTMLParser.

Parameters

allow(a regular expression (or list of))-—asingleregular expression (or
list of regular expressions) that the (absolute) urls must match in order to be extracted. If not
given (or empty), it will match all links.

deny (2 regular expression (or list of)) - asingle regular expression (or
list of regular expressions) that the (absolute) urls must match in order to be excluded (i.e.
not extracted). It has precedence over the a11ow parameter. If not given (or empty) it won’t
exclude any links.

allow_domains (str or 1ist)-—asingle value or a list of string containing domains
which will be considered for extracting the links

deny_domains (str or 1ist)-asingle value or a list of strings containing domains
which won’t be considered for extracting the links

deny extensions (list) — a single value or list of strings containing extensions
that should be ignored when extracting links. If not given, it will default to scrapy.
linkextractors.IGNORED_EXTENSIONS.

Changed in version 2.0: IGNORED_EXTENSIONS now includes 7z, 7zip, apk, bz2,
cdr, dmg, ico, iso, tar, tar.gz, webm, and xz.

restrict_xpaths (str or 1ist)-—is an XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from. If given, only the text
selected by those XPath will be scanned for links. See examples below.

restrict_css (str or 1list)— a CSS selector (or list of selectors) which defines
regions inside the response where links should be extracted from. Has the same behaviour
as restrict_xpaths.

restrict_text (a regular expression (or list of)) — a single regular
expression (or list of regular expressions) that the link’s text must match in order to be
extracted. If not given (or empty), it will match all links. If a list of regular expressions is
given, the link will be extracted if it matches at least one.

tags (str or list)-—atagor alistof tags to consider when extracting links. Defaults
to ('a', 'area').

attrs (1ist) — an attribute or list of attributes which should be considered when loo-
king for links to extract (only for those tags specified in the tags parameter). Defaults to
('href',)

canonicalize (boolean) - canonicalize each extracted wurl (using
w3lib.url.canonicalize_url). Defaults to False. Note that canonicalize_url is meant

108

Capitulo 3. Basic concepts

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Scrapy Documentation, Release 2.2.0

for duplicate checking; it can change the URL visible at server side, so the response can be
different for requests with canonicalized and raw URLs. If you're using LinkExtractor to
follow links it is more robust to keep the default canonicalize=False.

» unique (boolean)— whether duplicate filtering should be applied to extracted links.

= process_value (callable) - afunction which receives each value extracted from the
tag and attributes scanned and can modify the value and return a new one, or return None
to ignore the link altogether. If not given, process_value defaults to lambda x: x.

For example, to extract links from this code:

—Link text

You can use the following function in process_value:

def process_value (value):
m = re.search (" javascript:goToPage\ (' (.*x?)'", value)
if m:

return m.group (1)

» strip (boolean)— whether to strip whitespaces from extracted attributes. According to
HTMLS standard, leading and trailing whitespaces must be stripped from href attributes
of <a>, <area> and many other elements, src attribute of , <iframe> elements,
etc., so LinkExtractor strips space chars by default. Set st rip=False to turn it off (e.g. if
you’re extracting urls from elements or attributes which allow leading/trailing whitespaces).

extract_links (response)
Returns a list of Link objects from the specified response.

Only links that match the settings passed to the ___init___ method of the link extractor are returned.

Duplicate links are omitted.

3.11 Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy components, including the core, extensions,
pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings that the code can use to pull
configuration values from. The settings can be populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

3.11.1 Designating the settings
When you use Scrapy, you have to tell it which settings you’re using. You can do this by using an environment variable,
SCRAPY_SETTINGS_MODULE

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g. myproject.settings. Note
that the settings module should be on the Python import search path.

3.11. Settings 109

https://docs.python.org/3/tutorial/modules.html#tut-searchpath

Scrapy Documentation, Release 2.2.0

3.11.2 Populating the settings
Settings can be populated using different mechanisms, each of which having a different precedence. Here is the list of
them in decreasing order of precedence:

1. Command line options (most precedence)

2. Settings per-spider

3. Project settings module

4. Default settings per-command

5. Default global settings (less precedence)

The population of these settings sources is taken care of internally, but a manual handling is possible using API calls.
See the Sertings API topic for reference.

These mechanisms are described in more detail below.

1. Command line options

Arguments provided by the command line are the ones that take most precedence, overriding any other options. You
can explicitly override one (or more) settings using the —s (or ——set) command line option.

Example:

scrapy crawl myspider -s LOG_FILE=scrapy.log

2. Settings per-spider

Spiders (See the Spiders chapter for reference) can define their own settings that will take precedence and override the
project ones. They can do so by setting their custom_settings attribute:

class MySpider (scrapy.Spider) :

name = 'myspider'
custom_settings = {
'SOME_SETTING': 'some value',

3. Project settings module

The project settings module is the standard configuration file for your Scrapy project, it’s where most of your custom
settings will be populated. For a standard Scrapy project, this means you’ll be adding or changing the settings in the
settings.py file created for your project.

110 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

4. Default settings per-command

Each Scrapy tool command can have its own default settings, which override the global default settings. Those custom
command settings are specified in the default_settings attribute of the command class.

5. Default global settings

The global defaults are located in the scrapy.settings.default_settings module and documented in the
Built-in settings reference section.

3.11.3 How to access settings

In a spider, the settings are available through self.settings:

class MySpider (scrapy.Spider) :
name = 'myspider'
start_urls = ['http://example.com']

def parse(self, response):
print ("Existing settings: " % self.settings.attributes.keys())

Note: The settings attribute is set in the base Spider class after the spider is initialized. If you want to use
the settings before the initialization (e.g., in your spider’s __init__ () method), you’ll need to override the
from crawler () method

Settings can be accessed through the scrapy.crawler.Crawler.settings attribute of the Crawler that is
passed to from_crawler method in extensions, middlewares and item pipelines:

class MyExtension:
def _ init__ (self, log_is_enabled=False):
if log_is_enabled:
print ("log is enabled!")

@classmethod
def from_ crawler(cls, crawler):
settings = crawler.settings

return cls (settings.getbool ('LOG_ENABLED'"))

The settings object can be used like a dict (e.g., settings ['LOG_ENABLED']), butit’s usually preferred to extract
the setting in the format you need it to avoid type errors, using one of the methods provided by the Settings APL

3.11.4 Rationale for setting nhames

Setting names are usually prefixed with the component that they configure. For example, proper setting names for
a fictional robots.txt extension would be ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR,
etc.

3.11. Settings 111

Scrapy Documentation, Release 2.2.0

3.11.5 Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along with their default values and the scope where
they apply.

The scope, where available, shows where the setting is being used, if it’s tied to any particular component. In that case
the module of that component will be shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services, such as the S3 feed storage backend.
AWS_ENDPOINT_URL

Default: None

Endpoint URL used for S3-like storage, for example Minio or s3.scality.

AWS_USE_SSL

Default: None

Use this option if you want to disable SSL connection for communication with S3 or S3-like storage. By default SSL
will be used.

AWS_VERIFY

Default: None

Verify SSL connection between Scrapy and S3 or S3-like storage. By default SSL verification will occur.
AWS_REGION_NAME

Default: None

The name of the region associated with the AWS client.

112 Capitulo 3. Basic concepts

https://aws.amazon.com/
https://aws.amazon.com/

Scrapy Documentation, Release 2.2.0

BOT_NAME

Default: ' scrapybot'

The name of the bot implemented by this Scrapy project (also known as the project name). This name will be used for
the logging too.

It’s automatically populated with your project name when you create your project with the startproject com-
mand.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in item pipelines.

CONCURRENT_REQUESTS

Default: 16

The maximum number of concurrent (i.e. simultaneous) requests that will be performed by the Scrapy downloader.

CONCURRENT_REQUESTS_PER_DOMAIN

Default: 8
The maximum number of concurrent (i.e. simultaneous) requests that will be performed to any single domain.

See also: AutoThrottle extension and its AUTOTHROTTLE_TARGET _CONCURRENCY option.

CONCURRENT_REQUESTS_PER_IP

Default: 0

The maximum number of concurrent (i.e. simultaneous) requests that will be performed to any single IP. If non-
zero, the CONCURRENT_REQUESTS_PER_DOMATN setting is ignored, and this one is used instead. In other words,
concurrency limits will be applied per IP, not per domain.

This setting also affects DOWNLOAD DELAY and AutoThrottle extension: if CONCURRENT _REQUESTS_PER_TIPis
non-zero, download delay is enforced per IP, not per domain.

DEFAULT_ITEM_CLASS

Default: 'scrapy.item.Item'

The default class that will be used for instantiating items in the the Scrapy shell.

3.11. Settings 113

Scrapy Documentation, Release 2.2.0

DEFAULT_REQUEST_HEADERS

Default:

{
'Accept': 'text/html,application/xhtml+xml,application/xml;g=0.9,*/%;9g=0.8",
'Accept-Language': 'en',

The default headers used for Scrapy HTTP Requests. They’re populated in the DefaultHeadersMiddleware.

DEPTH_LIMIT

Default: 0
Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

The maximum depth that will be allowed to crawl for any site. If zero, no limit will be imposed.

DEPTH_PRIORITY

Default: 0
Scope: scrapy.spidermiddlewares.depth.DepthMiddleware
An integer that is used to adjust the priority of a Request based on its depth.

The priority of a request is adjusted as follows:

request.priority = request.priority - (depth » DEPTH_PRIORITY)

As depth increases, positive values of DEPTH_PRIORITY decrease request priority (BFO), while negative values
increase request priority (DFO). See also Does Scrapy crawl in breadth-first or depth-first order?.

Note: This setting adjusts priority in the opposite way compared to other priority settings
REDIRECT _PRIORITY ADJUST and RETRY PRIORITY ADJUST.

DEPTH_STATS_VERBOSE

Default: False
Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

Whether to collect verbose depth stats. If this is enabled, the number of requests for each depth is collected in the stats.

114 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

DNSCACHE_ENABLED

Default: True

Whether to enable DNS in-memory cache.
DNSCACHE_SIZE

Default: 10000

DNS in-memory cache size.

DNS_RESOLVER

New in version 2.0.
Default: 'scrapy.resolver.CachingThreadedResolver'

The class to be used to resolve DNS names. The default scrapy.resolver.CachingThreadedResolver
supports specifying a timeout for DNS requests via the DNS_TTIMEOUT setting, but works only with IPv4 addresses.
Scrapy provides an alternative resolver, scrapy.resolver.CachingHostnameResolver, which supports
IPv4/IPv6 addresses but does not take the DNS_TTMEOUT setting into account.

DNS_TIMEOUT

Default: 60

Timeout for processing of DNS queries in seconds. Float is supported.
DOWNLOADER

Default: ' scrapy.core.downloader.Downloader'

The downloader to use for crawling.
DOWNLOADER_HTTPCLIENTFACTORY

Default: 'scrapy.core.downloader.webclient.ScrapyHTTPClientFactory'

Defines a Twisted protocol.ClientFactory class to wuse for HTTP/1.0 connections (for
HTTP10DownloadHandler).

Note: HTTP/1.0 is rarely used nowadays so you can safely ignore this setting, unless you really want to use HTTP/1.0
and override DOWNLOAD_HANDLERS for http (s) scheme accordingly, i.e. to 'scrapy.core.downloader.
handlers.http.HTTP10DownloadHandler"'.

3.11. Settings 115

Scrapy Documentation, Release 2.2.0

DOWNLOADER_CLIENTCONTEXTFACTORY

Default: ' scrapy.core.downloader.contextfactory.ScrapyClientContextFactory'
Represents the classpath to the ContextFactory to use.

Here, «ContextFactory» is a Twisted term for SSL/TLS contexts, defining the TLS/SSL protocol version to use, whet-
her to do certificate verification, or even enable client-side authentication (and various other things).

Note: Scrapy default context factory does NOT perform remote server certificate verification. This is usually fine
for web scraping.

If you do need remote server certificate verification enabled, Scrapy also has another context factory class that you can
set, 'scrapy.core.downloader.contextfactory.BrowserLikeContextFactory"', which uses the
platform’s certificates to validate remote endpoints.

If you do use a custom ContextFactory, make sure its __init__ method accepts a method parameter (this is the
OpenSSL. SSL method mapping DOWNLOADER _CLIENT_TLS_METHOD),atls_verbose_logging parame-
ter (bool)and a t1s_ciphers parameter (see DOWNLOADER CLIENT _TLS_CIPHERS).

DOWNLOADER_CLIENT_TLS_CIPHERS

Default: 'DEFAULT'
Use this setting to customize the TLS/SSL ciphers used by the default HTTP/1.1 downloader.

The setting should contain a string in the OpenSSL cipher list format, these ciphers will be used as client ciphers. Chan-
ging this setting may be necessary to access certain HTTPS websites: for example, you may need to use ' DEFAULT : !
DH' for a website with weak DH parameters or enable a specific cipher that is not included in DEFAULT if a website
requires it.

DOWNLOADER_CLIENT_TLS_METHOD

Default: 'TLS"'
Use this setting to customize the TLS/SSL method used by the default HTTP/1.1 downloader.
This setting must be one of these string values:

= 'TLS': maps to OpenSSL’s TLS_method () (a.k.a SSLv23_method ()), which allows protocol negotia-
tion, starting from the highest supported by the platform; default, recommended

"TLSv1.0": this value forces HTTPS connections to use TLS version 1.0 ; set this if you want the behavior of
Scrapy<l1.1

» 'TLSv1.1':forces TLS version 1.1
» '"TLSv1.2"': forces TLS version 1.2

m 'SSLv3': forces SSL version 3 (not recommended)

116 Capitulo 3. Basic concepts

https://www.openssl.org/docs/manmaster/man1/openssl-ciphers.html#CIPHER-LIST-FORMAT

Scrapy Documentation, Release 2.2.0

DOWNLOADER_CLIENT_TLS_VERBOSE_LOGGING

Default: False

Setting this to True will enable DEBUG level messages about TLS connection parameters after establishing HTTPS
connections. The kind of information logged depends on the versions of OpenSSL and pyOpenSSL.

This setting is only used for the default DOWNLOADER CLIENTCONTEXTFACTORY.
DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their orders. For more info see Activating
a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

'scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware': 100,
'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware': 300,
'scrapy.downloadermiddlewares.downloadtimeout .DownloadTimeoutMiddleware': 350,
'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware': 400,
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 500,
'scrapy.downloadermiddlewares.retry.RetryMiddleware': 550,
'scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware': 560,
'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware': 580,
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 590,
'scrapy.downloadermiddlewares.redirect.RedirectMiddleware': 600,
'scrapy.downloadermiddlewares.cookies.CookiesMiddleware': 700,
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 750,
'scrapy.downloadermiddlewares.stats.DownloaderStats': 850,
'scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware': 900,

A dict containing the downloader middlewares enabled by default in Scrapy. Low orders are closer to the en-
gine, high orders are closer to the downloader. You should never modify this setting in your project, modify
DOWNLOADER _MIDDLEWARES instead. For more info see Activating a downloader middleware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

3.11. Settings 117

Scrapy Documentation, Release 2.2.0

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading consecutive pages from the sa-
me website. This can be used to throttle the crawling speed to avoid hitting servers too hard. Decimal numbers are
supported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

This setting is also affected by the RANDOMIZE_DOWNLOAD_DELAY setting (which is enabled by default). By
default, Scrapy doesn’t wait a fixed amount of time between requests, but uses a random interval between 0.5 *
DOWNLOAD_DELAY and 1.5 * DOWNLOAD_DELAY.

When CONCURRENT _REQUESTS_PER_IP is non-zero, delays are enforced per ip address instead of per domain.

You can also change this setting per spider by setting download_delay spider attribute.

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project. See DOWNLOAD HANDLERS_BASE for
example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
'http': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
'https': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
'ftp': 'scrapy.core.downloader.handlers.ftp.FTPDownloadHandler',

A dict containing the request download handlers enabled by default in Scrapy. You should never modify this setting in
your project, modify DOWNLOAD_HANDLERS instead.

You can disable any of these download handlers by assigning None to their URI scheme in DOWNLOAD_HANDLERS.
E.g., to disable the built-in FTP handler (without replacement), place this in your settings.py:

DOWNLOAD_HANDLERS = {
'ftp': None,

118 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

Note: This timeout can be set per spider using download_timeout spider attribute and per-request using
download timeout Request.meta key.

DOWNLOAD_MAXSIZE

Default: 1073741824 (1024MB)
The maximum response size (in bytes) that downloader will download.

If you want to disable it set to 0.

Note: This size can be set per spider using download_maxsize spider attribute and per-request using
download maxsize Request.meta key.

DOWNLOAD_WARNSIZE

Default: 33554432 (32MB)
The response size (in bytes) that downloader will start to warn.

If you want to disable it set to 0.

Note: This size can be set per spider using download_warnsize spider attribute and per-request using
download_warnsize Request.meta key.

DOWNLOAD_FAIL_ON_DATALOSS

Default: True

Whether or not to fail on broken responses, that is, declared Content-Length does not match con-
tent sent by the server or chunked response was not properly finish. If True, these responses raise a
ResponseFailed([_DataLoss]) error. If False, these responses are passed through and the flag dataloss
is added to the response, i.e.: 'dataloss' in response.flagsis True.

Optionally, this can be set per-request basis by using the download fail on dataloss Request.meta key to
False.

Note: A broken response, or data loss error, may happen under several circumstances, from server misconfiguration
to network errors to data corruption. It is up to the user to decide if it makes sense to process broken responses
considering they may contain partial or incomplete content. If RETRY ENABLED is True and this setting is set to
True, the ResponseFailed ([_Dataloss]) failure will be retried as usual.

3.11. Settings 119

Scrapy Documentation, Release 2.2.0

DUPEFILTER_CLASS

Default: 'scrapy.dupefilters.RFPDupeFilter"
The class used to detect and filter duplicate requests.

The default (REPDupeFilter) filters based on request fingerprint using the scrapy.utils.request.
request_fingerprint function. In order to change the way duplicates are checked you could subclass
RFPDupeFilter and override its request_fingerprint method. This method should accept scrapy
Request object and return its fingerprint (a string).

You can disable filtering of duplicate requests by setting DUPEFILTER _CLASS to 'scrapy.dupefilters.
BaseDupeFilter'. Be very careful about this however, because you can get into crawling loops. It’s usually a
better idea to set the dont__filter parameter to True on the specific Request that should not be filtered.

DUPEFILTER_DEBUG

Default: False

By default, REPDupeFilter only logs the first duplicate request. Setting DUPEFILTER _DEBUG to True will
make it log all duplicate requests.

EDITOR

Default: vi (on Unix systems) or the IDLE editor (on Windows)

The editor to use for editing spiders with the edit command. Additionally, if the EDITOR environment variable is
set, the edit command will prefer it over the default setting.

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.
EXTENSIONS_BASE

Default:

{
'scrapy.extensions.corestats.CoreStats': 0,
'scrapy.extensions.telnet.TelnetConsole': 0,
'scrapy.extensions.memusage.MemoryUsage': O,
'scrapy.extensions.memdebug.MemoryDebugger': 0,
'scrapy.extensions.closespider.CloseSpider': 0,
'scrapy.extensions. feedexport.FeedExporter': 0,
'scrapy.extensions.logstats.LogStats': O,
'scrapy.extensions.spiderstate.SpiderState': 0,
'scrapy.extensions.throttle.AutoThrottle': O,

A dict containing the extensions available by default in Scrapy, and their orders. This setting contains all stable built-in
extensions. Keep in mind that some of them need to be enabled through a setting.

For more information See the extensions user guide and the list of available extensions.

120 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

FEED_TEMPDIR

The Feed Temp dir allows you to set a custom folder to save crawler temporary files before uploading with FTP feed
storage and Amazon S3.

FEED_STORAGE_GCS_ACL

The Access Control List (ACL) used when storing items to Google Cloud Storage. For more information on how to
set this value, please refer to the column JSON API in Google Cloud documentation.

FTP_PASSIVE_MODE

Default: True

Whether or not to use passive mode when initiating FTP transfers.

FTP_PASSWORD

Default: "guest"

The password to use for FTP connections when there is no "ftp_password" in Request meta.

Note: Paraphrasing RFC 1635, although it is common to use either the password «guest» or one’s e-mail address
for anonymous FTP, some FTP servers explicitly ask for the user’s e-mail address and will not allow login with the
«guest» password.

FTP_USER

Default: "anonymous"

The username to use for FTP connections when there is no "ftp_user" in Request meta.
GCS_PROJECT_ID

Default: None

The Project ID that will be used when storing data on Google Cloud Storage.
ITEM_PIPELINES

Default: {}

A dict containing the item pipelines to use, and their orders. Order values are arbitrary, but it is customary to define
them in the 0-1000 range. Lower orders process before higher orders.

Example:

ITEM_PIPELINES = {
'mybot .pipelines.validate.ValidateMyItem': 300,
'mybot.pipelines.validate.StoreMyItem': 800,

3.11. Settings 121

https://cloud.google.com/storage/docs/access-control/lists
https://tools.ietf.org/html/rfc1635
https://cloud.google.com/storage/

Scrapy Documentation, Release 2.2.0

ITEM_PIPELINES_BASE

Default: {}

A dict containing the pipelines enabled by default in Scrapy. You should never modify this setting in your project,
modify TTEM PIPELINES instead.

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: 'ut£-8"'

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.
LOG_FORMAT

Default: ' $ (asctime)s [% (name)s] $(levelname)s: % (message)s'

String for formatting log messages. Refer to the Python logging documentation for the qwhole list of available place-
holders.

LOG_DATEFORMAT

Default: ' $Y- %$m— $d $H: $M: %S

String for formatting date/time, expansion of the $ (asctime) s placeholder in ZLOG_FORMAT. Refer to the Python
datetime documentation for the whole list of available directives.

LOG_FORMATTER

Default: scrapy.logformatter.LogFormatter

The class to use for formatting log messages for different actions.

122 Capitulo 3. Basic concepts

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Scrapy Documentation, Release 2.2.0

LOG_LEVEL

Default: 'DEBUG'

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING, INFO, DEBUG. For more info see
Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected to the log. For example if you
print ('hello') it will appear in the Scrapy log.

LOG_SHORT_NAMES

Default: False

If True, the logs will just contain the root path. If it is set to False then it displays the component responsible for
the log output

LOGSTATS_INTERVAL

Default: 60.0

The interval (in seconds) between each logging printout of the stats by LogStats.
MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified addresses if this setting is not empty,
otherwise the report will be written to the log.

Example:

MEMDEBUG_NOTIFY = ['userlexample.com']

3.11. Settings 123

Scrapy Documentation, Release 2.2.0

MEMUSAGE_ENABLED

Default: True
Scope: scrapy.extensions.memusage

Whether to enable the memory usage extension. This extension keeps track of a peak memory used by the pro-
cess (it writes it to stats). It can also optionally shutdown the Scrapy process when it exceeds a memory limit (see
MEMUSAGE_LIMIT MB), and notify by email when that happened (see MEMUSAGE _NOTIFY MATL).

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0
Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before shutting down Scrapy (if MEMUSAGE_ENABLED
is True). If zero, no check will be performed.

See Memory usage extension.

MEMUSAGE_CHECK_INTERVAL_SECONDS

New in version 1.1.
Default: 60.0
Scope: scrapy.extensions.memusage

The Memory usage extension checks the current memory usage, versus the limits set by MEMUSAGE_LIMIT MB and
MEMUSAGE_WARNING _MB, at fixed time intervals.

This sets the length of these intervals, in seconds.

See Memory usage extension.

MEMUSAGE_NOTIFY_MAIL

Default: False
Scope: scrapy.extensions.memusage
A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['userlexample.com']

See Memory usage extension.

124 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

MEMUSAGE_WARNING_MB

Default: 0
Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before sending a warning email notifying about it. If zero,
no warning will be produced.

NEWSPIDER_MODULE

Default: "'
Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 * DOWNLOAD DELAY and 1.5 *
DOWNLOAD_DELAY) while fetching requests from the same website.

This randomization decreases the chance of the crawler being detected (and subsequently blocked) by sites which
analyze requests looking for statistically significant similarities in the time between their requests.

The randomization policy is the same used by wget ——random—-wait option.

If DOWNLOAD DELAY is zero (default) this option has no effect.

REACTOR_THREADPOOL_MAXSIZE

Default: 10

The maximum limit for Twisted Reactor thread pool size. This is common multi-purpose thread pool used by various
Scrapy components. Threaded DNS Resolver, BlockingFeedStorage, S3FilesStore just to name a few. Increase this
value if you’re experiencing problems with insufficient blocking IO.

REDIRECT_PRIORITY_ADJUST

Default: +2
Scope: scrapy.downloadermiddlewares.redirect.RedirectMiddleware
Adjust redirect request priority relative to original request:

= a positive priority adjust (default) means higher priority.

= a negative priority adjust means lower priority.

3.11. Settings 125

https://www.gnu.org/software/wget/manual/wget.html

Scrapy Documentation, Release 2.2.0

RETRY_PRIORITY_ADJUST

Default: -1
Scope: scrapy.downloadermiddlewares.retry.RetryMiddleware
Adjust retry request priority relative to original request:

= a positive priority adjust means higher priority.

= a negative priority adjust (default) means lower priority.

ROBOTSTXT_OBEY

Default: False
Scope: scrapy.downloadermiddlewares.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see RobotsTxtMiddleware.

Note: While the default value is False for historical reasons, this option is enabled by default in settings.py file
generated by scrapy startproject command.

ROBOTSTXT_PARSER

Default: ' scrapy.robotstxt.ProtegoRobotParser'

The parser backend to use for parsing robots . txt files. For more information see RobotsTxtMiddleware.

ROBOTSTXT_USER_AGENT

Default: None

The user agent string to use for matching in the robots.txt file. If None, the User-Agent header you are sending with the
request or the USER_AGENT setting (in that order) will be used for determining the user agent to use in the robots.txt
file.

SCHEDULER

Default: 'scrapy.core.scheduler.Scheduler'

The scheduler to use for crawling.

SCHEDULER_DEBUG

Default: False

Setting to True will log debug information about the requests scheduler. This currently logs (only once) if the re-
quests cannot be serialized to disk. Stats counter (scheduler/unserializable) tracks the number of times this
happens.

Example entry in logs:

126 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

1956-01-31 00:00:00+0800 [scrapy.core.scheduler] ERROR: Unable to serialize request:
<GET http://example.com> - reason: cannot serialize <Request at 0x9%a7c7ec>

(type Request)> - no more unserializable requests will be logged

(see 'scheduler/unserializable' stats counter)

SCHEDULER_DISK_QUEUE

Default: 'scrapy.squeues.PickleLifoDiskQueue'

Type of disk queue that will be used by scheduler. Other available types are scrapy.squeues.
PickleFifoDiskQueue, scrapy.squeues.MarshalFifoDiskQueue, scrapy.squeues.
MarshalLifoDiskQueue.

SCHEDULER_MEMORY_QUEUE

Default: ' scrapy.squeues.LifoMemoryQueue'

Type of in-memory queue used by scheduler. Other available type is: scrapy . squeues.FifoMemoryQueue.

SCHEDULER_PRIORITY_QUEUE

Default: ' scrapy.pqueues.ScrapyPriorityQueue’

Type of priority queue used by the scheduler. Another available type is scrapy.pqueues.
DownloaderAwarePriorityQueue. scrapy.pqueues.DownloaderAwarePriorityQueue works
better than scrapy.pqueues.ScrapyPriorityQueue when you crawl many different domains in para-
llel. But currently scrapy.pqueues.DownloaderAwarePriorityQueue does not work together with
CONCURRENT REQUESTS PER_IP.

SCRAPER_SLOT_MAX_ACTIVE_SIZE

New in version 2.0.
Default: 5. 000_000
Soft limit (in bytes) for response data being processed.

While the sum of the sizes of all responses being processed is above this value, Scrapy does not process new requests.

SPIDER_CONTRACTS

Default:: {}

A dict containing the spider contracts enabled in your project, used for testing spiders. For more info see Spiders
Contracts.

3.11. Settings 127

Scrapy Documentation, Release 2.2.0

SPIDER_CONTRACTS_BASE

Default:

{
'scrapy.contracts.default.UrlContract' : 1,
'scrapy.contracts.default.ReturnsContract': 2,
'scrapy.contracts.default.ScrapesContract': 3,

A dict containing the Scrapy contracts enabled by default in Scrapy. You should never modify this setting in your
project, modify SPTDER CONTRACTS instead. For more info see Spiders Contracts.

You can disable any of these contracts by assigning None to their class pathin SPTDER_CONTRACTS. E.g., to disable
the built-in ScrapesContract, place this in your settings.py:

SPIDER_CONTRACTS = {
'scrapy.contracts.default.ScrapesContract': None,

}

SPIDER_LOADER_CLASS

Default: 'scrapy.spiderloader.SpiderLoader'

The class that will be used for loading spiders, which must implement the SpiderLoader API.

SPIDER_LOADER_WARN_ONLY

New in version 1.3.3.
Default: False

By default, when Scrapy tries to import spider classes from SPTDER_MODULES, it will fail loudly if there is any
ImportError exception. But you can choose to silence this exception and turn it into a simple warning by setting
SPIDER_LOADER_WARN_ONLY = True.

Note: Some scrapy commands run with this setting to True already (i.e. they will only issue a warning and will not
fail) since they do not actually need to load spider classes to work: scrapy runspider, scrapy settings,
scrapy startproject, scrapy version.

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their orders. For more info see Activating a
spider middleware.

128 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

SPIDER_MIDDLEWARES_BASE

Default:

{
'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 50,
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': 500,
'scrapy.spidermiddlewares.referer.RefererMiddleware': 700,
'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware': 800,
'scrapy.spidermiddlewares.depth.DepthMiddleware': 900,

A dict containing the spider middlewares enabled by default in Scrapy, and their orders. Low orders are closer to the

engine, high orders are closer to the spider. For more info see Activating a spider middleware.

SPIDER_MODULES

Default: []
A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

STATS_CLASS

Default: 'scrapy.statscollectors.MemoryStatsCollector'

The class to use for collecting stats, who must implement the Stats Collector API.
STATS_DUMP

Default: True
Dump the Scrapy stats (to the Scrapy log) once the spider finishes.

For more info see: Stats Collection.

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after spiders finish scraping. See St at sMailer for more info.

3.11. Settings

129

Scrapy Documentation, Release 2.2.0

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console will be enabled (provided its extension is also enabled).

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with startproject command and new
spiders with genspider command.

The project name must not conflict with the name of custom files or directories in the project subdirectory.

TWISTED_REACTOR

New in version 2.0.
Default: None
Import path of a given reactor.

Scrapy will install this reactor if no other reactor is installed yet, such as when the scrapy CLI program is invoked
or when using the CrawlerProcess class.

If you are using the CrawlerRunner class, you also need to install the correct reactor manually. You can do that
using install_ reactor():

scrapy.utils.reactor.install_reactor (reactor_path)
Installs the reactor with the specified import path.

If a reactor is already installed, install_reactor () hasno effect.

CrawlerRunner.__init__ raises Except ion if the installed reactor does not match the TWISTED REACTOR
setting; therfore, having top-level reactor imports in project files and imported third-party libraries will make
Scrapy raise Except ion when it checks which reactor is installed.

In order to use the reactor installed by Scrapy:

import scrapy
from twisted.internet import reactor

class QuotesSpider (scrapy.Spider) :

name = 'quotes'

def _ init__ (self, =xargs, +**kwargs):
self.timeout = int (kwargs.pop('timeout', '60"))
super (QuotesSpider, self).__init__ (xargs, =*xkwargs)

def start_requests(self):
reactor.calllater (self.timeout, self.stop)

urls = ['http://quotes.toscrape.com/page/1"']
for url in urls:

yield scrapy.Request (url=url, callback=self.parse)

def parse(self, response):

(continues on next page)

130 Capitulo 3. Basic concepts

https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://docs.python.org/3/library/exceptions.html#Exception
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://docs.python.org/3/library/exceptions.html#Exception

Scrapy Documentation, Release 2.2.0

(continued from previous page)

for quote in response.css('div.quote'):
yield {'text': quote.css('span.text::text').get ()}

def stop(self):
self.crawler.engine.close_spider (self, 'timeout')

which raises Except ion, becomes:

import scrapy

class QuotesSpider (scrapy.Spider) :

name = 'quotes'

def _ _init__ (self, =xargs, =*xkwargs):
self.timeout = int (kwargs.pop ('timeout', '60"'))
super (QuotesSpider, self).__init__ (xargs, =xkwargs)

def start_requests(self):
from twisted.internet import reactor
reactor.calllater (self.timeout, self.stop)

urls = ['http://quotes.toscrape.com/page/1"']
for url in urls:
yield scrapy.Request (url=url, callback=self.parse)

def parse(self, response):
for quote in response.css('div.quote'):
yield {'text': quote.css('span.text::text').get ()}

def stop(self):
self.crawler.engine.close_spider (self, 'timeout'")

The default value of the TWISTED REACTOR setting is None, which means that Scrapy will not attempt to install
any specific reactor, and the default reactor defined by Twisted for the current platform will be used. This is to maintain
backward compatibility and avoid possible problems caused by using a non-default reactor.

For additional information, see Choosing a Reactor and GUI Toolkit Integration.

URLLENGTH_LIMIT

Default: 2083
Scope: spidermiddlewares.urllength

The maximum URL length to allow for crawled URLs. For more information about the default value for this setting
see: https://boutell.com/newfaq/misc/urllength.html

3.11. Settings 131

https://docs.python.org/3/library/exceptions.html#Exception
https://twistedmatrix.com/documents/current/core/howto/choosing-reactor.html
https://boutell.com/newfaq/misc/urllength.html

Scrapy Documentation, Release 2.2.0

USER_AGENT

Default: "Scrapy/VERSION (+https://scrapy.org)"

The default User-Agent to use when crawling, unless overridden. This user agent is also used by
RobotsTxtMiddleware if ROBOTSTXT USER_AGENT setting is None and there is no overridding User-Agent
header specified for the request.

Settings documented elsewhere:

The following settings are documented elsewhere, please check each specific case to see how to enable and use them.
» AJAXCRAWL_ENABLED
» AUTOTHROTTLE _DEBUG
» AUTOTHROTTLE _ENABLED
» AUTOTHROTTLE _MAX_DELAY
» AUTOTHROTTLE_START _DELAY
» AUTOTHROTTLE _TARGET _CONCURRENCY
= AWS_ACCESS_KEY_ID
= AWS_ENDPOINT_URL
= AWS_REGION_NAME
» AWS_SECRET ACCESS_KEY
= AWS_USE_SSL
= AWS_VERIFY
= BOT_NAME
= CLOSESPIDER _ERRORCOUNT
s CLOSESPIDER_ITEMCOUNT
» CLOSESPIDER_PAGECOUNT
» CLOSESPIDER _TIMEOUT
= COMMANDS MODULE
» COMPRESSION_ENABLED
» CONCURRENT_ITEMS
= CONCURRENT _REQUESTS
s CONCURRENT_REQUESTS_PER_DOMAIN
» CONCURRENT_REQUESTS_PER_IP
» COOKIES_DEBUG
= COOKIES_ENABLED
» DEFAULT _ITEM_CLASS
» DEFAULT REQUEST_HEADERS
= DEPTH_LIMIT

132 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

DEPTH_PRIORITY
DEPTH_STATS_VERBOSE
DNSCACHE_ENABLED
DNSCACHE_SIZE

DNS_RESOLVER

DNS_TIMEOUT

DOWNLOADER
DOWNLOADER_CLIENTCONTEXTFACTORY
DOWNLOADER_CLIENT _TLS_CIPHERS
DOWNLOADER_CLIENT TLS METHOD
DOWNLOADER_CLIENT TLS _VERBOSE_LOGGING
DOWNLOADER _HTTPCLIENTFACTORY
DOWNLOADER_MIDDLEWARES
DOWNLOADER_MIDDLEWARES BASE
DOWNLOADER_STATS
DOWNLOAD_DELAY
DOWNLOAD_FAIL_ON_DATALOSS
DOWNLOAD_HANDLERS
DOWNLOAD_HANDLERS BASE
DOWNLOAD_MAXSIZE
DOWNLOAD_TIMEOUT
DOWNLOAD_WARNSIZE

DUPEFILTER CLASS
DUPEFILTER_DEBUG

EDITOR

EXTENSIONS

EXTENSIONS_BASE

FEEDS

FEED_EXPORTERS
FEED_EXPORTERS_BASE
FEED_EXPORT _ENCODING
FEED_EXPORT_FIELDS
FEED_EXPORT_INDENT
FEED_STORAGES
FEED_STORAGES_BASE
FEED_STORAGE_FTP_ACTIVE

3.11

. Settings

133

Scrapy Documentation, Release 2.2.0

s FEED_STORAGE_GCS_ACL

» FEED _STORAGE_S3_ACL

» FEED _STORE_EMPTY

» FEED_TEMPDIR

s FILES EXPIRES

» FILES RESULT FIELD

= FILES STORE

s FILES STORE_GCS_ACL

= FILES STORE_S3_ACL

= FILES URLS_FIELD

= F'TP_PASSIVE_MODE

s FTP_PASSWORD

s FTP_USER

= GCS_PROJECT_ID

» HTTPCACHE_ALWAYS_STORE

s HITTPCACHE_DBM_MODULE

» HTTPCACHE_DIR

» HTTPCACHE_ENABLED

s HTTPCACHE_EXPIRATION_SECS
s HTTPCACHE_GZIP

» HTTPCACHE_IGNORE_HTTP_CODES
» HTTPCACHE_IGNORE_MISSING
s HTTPCACHE _IGNORE_RESPONSE_CACHE_CONTROLS
» HTTPCACHE_IGNORE_SCHEMES
» HTTPCACHE_POLICY

s HTTPCACHE_STORAGE

» HTTPERROR _ALLOWED_CODES
» HTTPERROR ALLOW_ALL

» HTTPPROXY AUTH_ENCODING
s HTTPPROXY_ENABLED

= IMAGES_EXPIRES

» IMAGES_MIN_HEIGHT

s IMAGES_MIN_WIDTH

s IMAGES_RESULT_FIELD

= IMAGES_STORE

» IMAGES_STORE_GCS_ACL

134 Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

IMAGES_STORE_S3_ACL
IMAGES_THUMBS
IMAGES_URLS_FIELD
ITEM_PIPELINES
ITEM_PIPELINES_BASE
LOGSTATS_INTERVAL
LOG_DATEFORMAT
LOG_ENABLED
LOG_ENCODING

LOG_FILE

LOG_FORMAT
LOG_FORMATTER

LOG_LEVEL
LOG_SHORT_NAMES
LOG_STDOUT

MAIL_FROM

MAIL_HOST

MAIL_PASS

MAIL_PORT

MAIL_SSL

MAIL TLS

MAIL _USER
MEDIA_ALLOW_REDIRECTS
MEMDEBUG_ENABLED
MEMDEBUG_NOTIFY
MEMUSAGE_CHECK_INTERVAL_SECONDS
MEMUSAGE_ENABLED
MEMUSAGE_LIMIT _MB
MEMUSAGE_NOTIFY_MAIL
MEMUSAGE_WARNING_MB
METAREFRESH ENABLED
METAREFRESH IGNORE_TAGS
METAREFRESH_MAXDELAY
NEWSPIDER_MODULE
RANDOMIZE_DOWNLOAD_DELAY
REACTOR_THREADPOOL_MAXSIZE

3.11

. Settings

135

Scrapy Documentation, Release 2.2.0

REDIRECT_ENABLED
REDIRECT MAX_TIMES
REDIRECT _PRIORITY_ADJUST
REFERER_ENABLED
REFERRER_POLICY

RETRY ENABLED

RETRY _HTTP_CODES

RETRY _PRIORITY_ADJUST
RETRY _TIMES

ROBOTSTXT _OBEY
ROBOTSTXT_PARSER
ROBOTSTXT _USER_AGENT
SCHEDULER

SCHEDULER DEBUG
SCHEDULER _DISK_QUEUE
SCHEDULER_MEMORY _QUEUE
SCHEDULER _PRIORITY_QUEUE
SCRAPER_SLOT_MAX_ACTIVE_SIZE
SPIDER_CONTRACTS
SPIDER_CONTRACTS_BASE
SPIDER_LOADER _CLASS
SPIDER_LOADER_WARN_ONLY
SPIDER_MIDDLEWARES
SPIDER_MIDDLEWARES _BASE
SPIDER_MODULES
STATSMAILER_RCPTS
STATS_CLASS

STATS_DUMP
TELNETCONSOLE_ENABLED
TELNETCONSOLE_HOST
TELNETCONSOLE_PASSWORD
TELNETCONSOLE_PORT
TELNETCONSOLE_USERNAME
TEMPLATES_DIR
TWISTED_REACTOR
URLLENGTH_LIMIT

136

Capitulo 3. Basic concepts

Scrapy Documentation, Release 2.2.0

» USER_AGENT

3.12 Exceptions

3.12.1 Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

CloseSpider

exception scrapy.exceptions.CloseSpider (reason='cancelled’)
This exception can be raised from a spider callback to request the spider to be closed/stopped. Supported argu-
ments:

Parameters reason (str) — the reason for closing

For example:

def parse_page(self, response):
if 'Bandwidth exceeded' in response.body:
raise CloseSpider ('bandwidth_exceeded')

DontCloseSpider

exception scrapy.exceptions.DontCloseSpider

This exception can be raised in a spider._idle signal handler to prevent the spider from being closed.

Dropltem

exception scrapy.exceptions.DropItem

The exception that must be raised by item pipeline stages to stop processing an Item. For more information see /tem
Pipeline.

IgnoreRequest

exception scrapy.exceptions.IgnoreRequest

This exception can be raised by the Scheduler or any downloader middleware to indicate that the request should be
ignored.

3.12. Exceptions 137

https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

NotConfigured

exception scrapy.exceptions.NotConfigured

This exception can be raised by some components to indicate that they will remain disabled. Those components
include:

= Extensions

= [tem pipelines

= Downloader middlewares
= Spider middlewares

The exception must be raised in the component’s __init___ method.

NotSupported

exception scrapy.exceptions.NotSupported

This exception is raised to indicate an unsupported feature.

StopDownload

New in version 2.2.
exception scrapy.exceptions.StopDownload (fail=True)

Raised from a bytes_received signal handler to indicate that no further bytes should be downloaded for a res-
ponse.

The fail boolean parameter controls which method will handle the resulting response:

» If fail=True (default), the request errback is called. The response object is available as the response
attribute of the StopDownload exception, which is in turn stored as the value attribute of the received
Failure object. This means that in an errback defined as def errback (self, failure), the response
can be accessed though failure.value.response.

» If fail=False, the request callback is called instead.

In both cases, the response could have its body truncated: the body contains all bytes received up until the exception is
raised, including the bytes received in the signal handler that raises the exception. Also, the response object is marked
with "download_stopped" inits Response. flags attribute.

Note: fail is a keyword-only parameter, i.e. raising StopDownload (False) or StopDownload (True) will
raise a TypeError.

See the documentation for the bytes_ received signal and the Stopping the download of a Response topic for
additional information and examples.

Command line tool Learn about the command-line tool used to manage your Scrapy project.
Spiders Write the rules to crawl your websites.

Selectors Extract the data from web pages using XPath.

Scrapy shell Test your extraction code in an interactive environment.

Items Define the data you want to scrape.

138 Capitulo 3. Basic concepts

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://docs.python.org/3/library/exceptions.html#TypeError

Scrapy Documentation, Release 2.2.0

Item Loaders Populate your items with the extracted data.

Item Pipeline Post-process and store your scraped data.

Feed exports Output your scraped data using different formats and storages.

Requests and Responses Understand the classes used to represent HTTP requests and responses.
Link Extractors Convenient classes to extract links to follow from pages.

Settings Learn how to configure Scrapy and see all available settings.

Exceptions See all available exceptions and their meaning.

3.12. Exceptions 139

Scrapy Documentation, Release 2.2.0

140 Capitulo 3. Basic concepts

capiTuLo 4

Built-in services

4.1 Logging

Note: scrapy.log has been deprecated alongside its functions in favor of explicit calls to the Python standard
logging. Keep reading to learn more about the new logging system.

Scrapy uses 1ogging for event logging. We’ll provide some simple examples to get you started, but for more advan-
ced use-cases it’s strongly suggested to read thoroughly its documentation.

Logging works out of the box, and can be configured to some extent with the Scrapy settings listed in Logging settings.

Scrapy calls scrapy.utils.log.configure_logging () to set some reasonable defaults and handle those
settings in Logging settings when running commands, so it’s recommended to manually call it if you’re running Scrapy
from scripts as described in Run Scrapy from a script.

4.1.1 Log levels
Python’s builtin logging defines 5 different levels to indicate the severity of a given log message. Here are the standard
ones, listed in decreasing order:
1. logging.CRITICAL - for critical errors (highest severity)
logging.ERROR - for regular errors
logging.WARNING - for warning messages

logging. INFO - for informational messages

A

logging.DEBUG - for debugging messages (lowest severity)

141

https://docs.python.org/3/library/logging.html#module-logging

Scrapy Documentation, Release 2.2.0

4.1.2 How to log messages

Here’s a quick example of how to log a message using the 1logging.WARNING level:

import logging
logging.warning ("This is a warning")

There are shortcuts for issuing log messages on any of the standard 5 levels, and there’s also a general Logging. log
method which takes a given level as argument. If needed, the last example could be rewritten as:

import logging
logging.log(logging.WARNING, "This is a warning")

On top of that, you can create different «loggers» to encapsulate messages. (For example, a common practice is to
create different loggers for every module). These loggers can be configured independently, and they allow hierarchical
constructions.

The previous examples use the root logger behind the scenes, which is a top level logger where all messages are
propagated to (unless otherwise specified). Using 1ogging helpers is merely a shortcut for getting the root logger
explicitly, so this is also an equivalent of the last snippets:

import logging
logger = logging.getLogger ()
logger.warning ("This is a warning")

You can use a different logger just by getting its name with the 1ogging.getLogger function:

import logging
logger = logging.getLogger ('mycustomlogger')
logger.warning ("This is a warning™)

Finally, you can ensure having a custom logger for any module you’re working on by using the __name___ variable,
which is populated with current module’s path:

import logging
logger = logging.getlLogger (_ name)
logger.warning ("This is a warning")

See also:
Module logging, HowTo Basic Logging Tutorial
Module logging, Loggers Further documentation on loggers

4.1.3 Logging from Spiders

Scrapy provides a 1 ogger within each Spider instance, which can be accessed and used like this:

import scrapy
class MySpider (scrapy.Spider) :

name = 'myspider'
start_urls = ['https://scrapinghub.com']

def parse(self, response):
self.logger.info('Parse function called on ', response.url)

142 Capitulo 4. Built-in services

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/library/logging.html#logger

Scrapy Documentation, Release 2.2.0

That logger is created using the Spider’s name, but you can use any custom Python logger you want. For example:

import logging
import scrapy

logger = logging.getLogger ('mycustomlogger")
class MySpider (scrapy.Spider):

name = 'myspider'
start_urls = ['https://scrapinghub.com']

def parse(self, response):
logger.info ('Parse function called on ', response.url)

4.1.4 Logging configuration

Loggers on their own don’t manage how messages sent through them are displayed. For this task, different «handlers»
can be attached to any logger instance and they will redirect those messages to appropriate destinations, such as the
standard output, files, emails, etc.

By default, Scrapy sets and configures a handler for the root logger, based on the settings below.

Logging settings

These settings can be used to configure the logging:
s LOG_FILE
m LLOG_ENABLED
m LOG_ENCODING
m [LOG_LEVEL
m LLOG_FORMAT
s L OG_DATEFORMAT

m LOG_STDOUT

LOG_SHORT_ NAMES

The first couple of settings define a destination for log messages. If LOG_FTLE is set, messages sent through the root
logger will be redirected to a file named LOG_FILE with encoding LOG_ENCODING. If unset and LOG_ENABLED
is True, log messages will be displayed on the standard error. Lastly, if LOG_ENABLED is False, there won’t be
any visible log output.

LOG_LEVEL determines the minimum level of severity to display, those messages with lower severity will be filtered
out. It ranges through the possible levels listed in Log levels.

LOG_FORMAT and LOG_DATEFORMAT specify formatting strings used as layouts for all messages. Those strings can
contain any placeholders listed in logging’s logrecord attributes docs and datetime’s strftime and strptime directives
respectively.

If LOG_SHORT_NAMES is set, then the logs will not display the Scrapy component that prints the log. It is unset by
default, hence logs contain the Scrapy component responsible for that log output.

4.1. Logging 143

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Scrapy Documentation, Release 2.2.0

Command-line options
There are command-line arguments, available for all commands, that you can use to override some of the Scrapy
settings regarding logging.
= ——logfile FILE Overrides LOG_FILE
= ——loglevel/-L LEVEL Overrides LOG_LEVEL
» ——nolog Sets LOG_ENABLED to False
See also:

Module 1logging.handlers Further documentation on available handlers

Custom Log Formats
A custom log format can be set for different actions by extending LogFormatter class and making
LOG_FORMATTER point to your new class.

class scrapy.logformatter.LogFormatter
Class for generating log messages for different actions.

All methods must return a dictionary listing the parameters level, msg and args which are going to be used
for constructing the log message when calling 1ogging. log.

Dictionary keys for the method outputs:

= level is the log level for that action, you can use those from the python logging library : logging.
DEBUG, logging.INFO, logging.WARNING, logging.ERROR and logging.CRITICAL.

= msg should be a string that can contain different formatting placeholders. This string, formatted with the
provided args, is going to be the long message for that action.

= args should be a tuple or dict with the formatting placeholders for msg. The final log message is compu-
ted asmsg % args.

Users can define their own LogFormatter class if they want to customize how each action is logged or if
they want to omit it entirely. In order to omit logging an action the method must return None.

Here is an example on how to create a custom log formatter to lower the severity level of the log message when
an item is dropped from the pipeline:

class PoliteLogFormatter (logformatter.LogFormatter) :
def dropped(self, item, exception, response, spider):

return {
'level': logging.INFO, # lowering the level from logging.WARNING
'msg': u"Dropped: " + os.linesep + " ",
'args': {
'exception': exception,
"item': item,

crawled (request, response, spider)
Logs a message when the crawler finds a webpage.

download_error (failure, request, spider, errmsg=None)
Logs a download error message from a spider (typically coming from the engine).

New in version 2.0.

144 Capitulo 4. Built-in services

https://docs.python.org/3/library/logging.handlers.html#module-logging.handlers
https://docs.python.org/3/library/logging.html

Scrapy Documentation, Release 2.2.0

dropped (item, exception, response, spider)
Logs a message when an item is dropped while it is passing through the item pipeline.

item_error (item, exception, response, spider)
Logs a message when an item causes an error while it is passing through the item pipeline.

New in version 2.0.

scraped (ifem, response, spider)
Logs a message when an item is scraped by a spider.

spider_error (failure, request, response, spider)
Logs an error message from a spider.

New in version 2.0.

Advanced customization

Because Scrapy uses stdlib logging module, you can customize logging using all features of stdlib logging.

For example, let’s say you’re scraping a website which returns many HTTP 404 and 500 responses, and you want to
hide all messages like this:

2016-12-16 22:00:06 [scrapy.spidermiddlewares.httperror] INFO: Ignoring
response <500 http://quotes.toscrape.com/page/1-34/>: HTTP status code
is not handled or not allowed

The first thing to note is a logger name - it is in brackets: [scrapy.spidermiddlewares.httperror].Ifyou
getjust [scrapy] then LOG_SHORT_NAMES is likely set to True; set it to False and re-run the crawl.

Next, we can see that the message has INFO level. To hide it we should set logging level for scrapy.
spidermiddlewares.httperror higher than INFO; next level after INFO is WARNING. It could be done
e.g. in the spider’s __init__ method:

import logging
import scrapy

class MySpider (scrapy.Spider) :
#
def _ _init__ (self, xargs, =*xkwargs):
logger = logging.getLogger ('scrapy.spidermiddlewares.httperror')
logger.setLevel (logging.WARNING)
super () .__init__ (xargs, =*=*kwargs)

If you run this spider again then INFO messages from scrapy . spidermiddlewares.httperror logger will
be gone.

4.1. Logging 145

Scrapy Documentation, Release 2.2.0

4.1.5 scrapy.utils.log module
scrapy.utils.log.configure_logging (settings=None, install_root_handler=True)
Initialize logging defaults for Scrapy.
Parameters

» settings (dict, Settings object or None) — settings used to create and configure a
handler for the root logger (default: None).

» install root_handler (bool) — whether to install root logging handler (default:
True)

This function does:
= Route warnings and twisted logging through Python standard logging
= Assign DEBUG and ERROR level to Scrapy and Twisted loggers respectively
= Route stdout to log if LOG_STDOUT setting is True

When install_root_handler is True (default), this function also creates a handler for the root logger
according to given settings (see Logging settings). You can override default options using sett ings argument.

When settings is empty or None, defaults are used.

configure_logging is automatically called when using Scrapy commands or CrawlerProcess, but
needs to be called explicitly when running custom scripts using CrawlerRunner. In that case, its usage is not

required but it’s recommended.

Another option when running custom scripts is to manually configure the logging. To do this you can use

logging.basicConfig () to seta basic root handler.

Note that CrawlerProcess automatically calls configure_logging, so it is recommended to only use

logging.basicConfig () together with CrawlerRunner.

This is an example on how to redirect INFO or higher messages to a file:

import logging

logging.basicConfig(
filename="'log.txt"',
format=" : ',
level=logging.INFO

Refer to Run Scrapy from a script for more details about using Scrapy this way.

4.2 Stats Collection

Scrapy provides a convenient facility for collecting stats in the form of key/values, where values are often counters.
The facility is called the Stats Collector, and can be accessed through the stats attribute of the Crawler API, as

illustrated by the examples in the Common Stats Collector uses section below.

However, the Stats Collector is always available, so you can always import it in your module and use its API (to
increment or set new stat keys), regardless of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the stats collector usage: you should spend
no more than one line of code for collecting stats in your spider, Scrapy extension, or whatever code you’re using the

Stats Collector from.

146 Capitulo 4. Built-in services

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.html#logging.basicConfig

Scrapy Documentation, Release 2.2.0

Another feature of the Stats Collector is that it’s very efficient (when enabled) and extremely efficient (almost unnoti-
ceable) when disabled.

The Stats Collector keeps a stats table per open spider which is automatically opened when the spider is opened, and
closed when the spider is closed.

4.2.1 Common Stats Collector uses

Access the stats collector through the stat s attribute. Here is an example of an extension that access stats:

class ExtensionThatAccessStats:

def _ init_ (self, stats):
self.stats = stats

@classmethod
def from _crawler(cls, crawler):
return cls (crawler.stats)

Set stat value:

’stats.set_value('hostname’, socket .gethostname ())

Increment stat value:

’stats.inc_value('custom_count')

Set stat value only if greater than previous:

’stats.max_value('max_items_scraped', value)

Set stat value only if lower than previous:

’stats.min_value('min_free_memory_percent', value)

Get stat value:

>>> stats.get_value ('custom_count")
1

Get all stats:

>>> stats.get_stats()
{'custom_count': 1, 'start_time': datetime.datetime (2009, 7, 14, 21, 47, 28, 977139)}

4.2.2 Available Stats Collectors

Besides the basic Stat sCollector there are other Stats Collectors available in Scrapy which extend the basic Stats
Collector. You can select which Stats Collector to use through the STATS CLASS setting. The default Stats Collector
used is the MemoryStatsCollector.

4.2. Stats Collection 147

Scrapy Documentation, Release 2.2.0

MemoryStatsCollector

class scrapy.statscollectors.MemoryStatsCollector
A simple stats collector that keeps the stats of the last scraping run (for each spider) in memory, after they’re
closed. The stats can be accessed through the spider. stat s attribute, which is a dict keyed by spider domain
name.

This is the default Stats Collector used in Scrapy.

spider_stats
A dict of dicts (keyed by spider name) containing the stats of the last scraping run for each spider.

DummyStatsCollector

class scrapy.statscollectors.DummyStatsCollector
A Stats collector which does nothing but is very efficient (because it does nothing). This stats collector can
be set via the STATS CLASS setting, to disable stats collect in order to improve performance. However, the
performance penalty of stats collection is usually marginal compared to other Scrapy workload like parsing

pages.

4.3 Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib library, Scrapy provides its own facility for
sending e-mails which is very easy to use and it’s implemented using Twisted non-blocking IO, to avoid interfering
with the non-blocking IO of the crawler. It also provides a simple API for sending attachments and it’s very easy to
configure, with a few sertings.

4.3.1 Quick example

There are two ways to instantiate the mail sender. You can instantiate it using the standard __init__ method:

from scrapy.mail import MailSender
mailer = MailSender ()

Or you can instantiate it passing a Scrapy settings object, which will respect the sertings:

mailer = MailSender.from_settings (settings)

And here is how to use it to send an e-mail (without attachments):

mailer.send(to=["someonelexample.com"], subject="Some subject", body="Some body", cc=][
—"another@example.com"])

148 Capitulo 4. Built-in services

https://docs.python.org/3/library/smtplib.html#module-smtplib
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html

Scrapy Documentation, Release 2.2.0

4.3.2 MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it uses Twisted non-blocking 10, like the

rest of the framework.

class scrapy.mail.MailSender (smiphost=None, mailfrom=None, smtpuser=None, smtp-

pass=None, smtpport=None)

Parameters

smtphost (str or bytes)-the SMTP host to use for sending the emails. If omitted,
the MATI,_ HOST setting will be used.

mailfrom (st r)— the address used to send emails (in the From: header). If omitted, the
MATI,_FROM setting will be used.

smtpuser — the SMTP user. If omitted, the MATI,_USER setting will be used. If not given,
no SMTP authentication will be performed.

smtppass (str or bytes)—the SMTP pass for authentication.

smtpport (int)—the SMTP port to connect to

smtptls (boolean) - enforce using SMTP STARTTLS

smtpssl (boolean) — enforce using a secure SSL connection

classmethod from_ settings (settings)
Instantiate using a Scrapy settings object, which will respect these Scrapy settings.

Parameters settings (scrapy.settings.Settings object)—the e-mail recipients

send (fo, subject, body, cc=None, attachs=(), mimetype="text/plain’, charset=None)
Send email to the given recipients.

Parameters

to(str or list of str)- the e-mail recipients
subject (str) - the subject of the e-mail

cc(str or list of str)-thee-mailsto CC
body (st r) — the e-mail body

attachs (iterable) — an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will appear on the
e-mail’s attachment, mimet ype is the mimetype of the attachment and file_object
is a readable file object with the contents of the attachment

mimetype (st r)—the MIME type of the e-mail

charset (str) — the character encoding to use for the e-mail contents

4.3. Sending e-mail 149

https://twistedmatrix.com/documents/current/core/howto/defer-intro.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

4.3.3 Mail settings

These settings define the default __init__ method values of the MailSender class, and can be used to configure
e-mail notifications in your project without writing any code (for those extensions and code that uses Ma il Sender).

MAIL_FROM

Default: 'scrapy@localhost'

Sender email to use (From: header) for sending emails.
MAIL_HOST

Default: 'localhost'

SMTP host to use for sending emails.

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be performed.
MAIL_PASS

Default: None

Password to use for SMTP authentication, along with MATI, USER.
MAIL_TLS

Default: False

Enforce using STARTTLS. STARTTLS is a way to take an existing insecure connection, and upgrade it to a secure
connection using SSL/TLS.

150 Capitulo 4. Built-in services

Scrapy Documentation, Release 2.2.0

MAIL_SSL

Default: False

Enforce connecting using an SSL encrypted connection

4.4 Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a Scrapy running process. The telnet console
is just a regular python shell running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also disable it if you
want. For more information about the extension itself see Telnet console extension.

Warning: It is not secure to use telnet console via public networks, as telnet doesn’t provide any transport-layer
security. Having username/password authentication doesn’t change that.

Intended usage is connecting to a running Scrapy spider locally (spider process and telnet client are on the sa-
me machine) or over a secure connection (VPN, SSH tunnel). Please avoid using telnet console over insecure
connections, or disable it completely using TELNETCONSOLE_ENABLED option.

4.4.1 How to access the telnet console

The telnet console listens in the TCP port defined in the TELNETCONSOLE_PORT setting, which defaults to 602 3.
To access the console you need to type:

telnet localhost 6023
Trying localhost...
Connected to localhost.
Escape character is '"*]'.
Username:

Password:

>>>

By default Username is scrapy and Password is autogenerated. The autogenerated Password can be seen on Scrapy
logs like the example below:

2018-10-16 14:35:21 [scrapy.extensions.telnet] INFO: Telnet Password: 16£92501e8a59326

Default Username and Password can be overridden by the settings TELNETCONSOLE _USERNAME and
TELNETCONSOLE_PASSWORD.

Warning: Username and password provide only a limited protection, as telnet is not using secure transport - by
default traffic is not encrypted even if username and password are set.

You need the telnet program which comes installed by default in Windows, and most Linux distros.

4.4. Telnet Console 151

Scrapy Documentation, Release 2.2.0

4.4.2 Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy process, so you can do anything from it

including importing new modules, etc.

However, the telnet console comes with some default variables defined for convenience:

Shortcut Description

crawler the Scrapy Crawler (scrapy.crawler.Crawler object)
engine Crawler.engine attribute

spider the active spider

slot the engine slot

extensions | the Extension Manager (Crawler.extensions attribute)
stats the Stats Collector (Crawler.stats attribute)
settings the Scrapy settings object (Crawler.settings attribute)
est print a report of the engine status

prefs for memory debugging (see Debugging memory leaks)
o) a shortcut to the pprint .pprint () function

hpy for memory debugging (see Debugging memory leaks)

4.4.3 Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est () method of the Scrapy engine to quickly show its state using the telnet console:

telnet localhost 6023
>>> est ()
Execution engine status

time () —engine.start_time
engine.has_capacity ()

len (engine.downloader.active)
engine.scraper.is_idle()
engine.spider.name
engine.spider_is_idle (engine.spider)
engine.slot.closing
len(engine.slot.inprogress)

len (engine.slot.scheduler.dgs or [])
len(engine.slot.scheduler.mgs)

len (engine.scraper.slot.queue)

len (engine.scraper.slot.active)
engine.scraper.slot.active_size
engine.scraper.slot.itemproc_size
engine.scraper.slot.needs_backout ()

8.62972998619
False

16

False
followall
False

False

16

0

92

152

Capitulo 4. Built-in services

https://docs.python.org/3/library/pprint.html#pprint.pprint

Scrapy Documentation, Release 2.2.0

Pause, resume and stop the Scrapy engine

To pause:

telnet localhost 6023
>>> engine.pause ()
>>>

To resume:

telnet localhost 6023
>>> engine.unpause ()
>>>

To stop:

telnet localhost 6023
>>> engine.stop ()
Connection closed by foreign host.

4.4.4 Telnet Console signals
scrapy.extensions.telnet.update_telnet_vars (telnet_vars)
Sent just before the telnet console is opened. You can hook up to this signal to add, remove or update the variables

that will be available in the telnet local namespace. In order to do that, you need to update the telnet_vars
dict in your handler.

Parameters telnet_vars (dict) — the dict of telnet variables

4.4.5 Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a dynamically assigned port is used.
TELNETCONSOLE_HOST

Default: '127.0.0.1"

The interface the telnet console should listen on

4.4. Telnet Console 153

https://docs.python.org/3/library/stdtypes.html#dict

Scrapy Documentation, Release 2.2.0

TELNETCONSOLE_USERNAME

Default: 'scrapy’

The username used for the telnet console

TELNETCONSOLE_PASSWORD

Default: None

The password used for the telnet console, default behaviour is to have it autogenerated

4.5 Web Service

webservice has been moved into a separate project.

It is hosted at:
https://github.com/scrapy-plugins/scrapy-jsonrpc

Logging Learn how to use Python’s builtin logging on Scrapy.

Stats Collection Collect statistics about your scraping crawler.

Sending e-mail Send email notifications when certain events occur.

Telnet Console Inspect a running crawler using a built-in Python console.

Web Service Monitor and control a crawler using a web service.

154

Capitulo 4. Built-in services

https://github.com/scrapy-plugins/scrapy-jsonrpc

CAPITULO D

Solving specific problems

5.1 Frequently Asked Questions

5.1.1 How does Scrapy compare to BeautifulSoup or Ixmi?
BeautifulSoup and Ixml are libraries for parsing HTML and XML. Scrapy is an application framework for writing
web spiders that crawl web sites and extract data from them.

Scrapy provides a built-in mechanism for extracting data (called selectors) but you can easily use BeautifulSoup (or
Ixml) instead, if you feel more comfortable working with them. After all, they’re just parsing libraries which can be
imported and used from any Python code.

In other words, comparing BeautifulSoup (or Ixml) to Scrapy is like comparing jinja2 to Django.

5.1.2 Can | use Scrapy with BeautifulSoup?

Yes, you can. As mentioned above, BeautifulSoup can be used for parsing HTML responses in Scrapy callbacks. You
just have to feed the response’s body into a Beaut i fulSoup object and extract whatever data you need from it.

Here’s an example spider using BeautifulSoup API, with 1xm1 as the HTML parser:

from bs4 import BeautifulSoup
import scrapy

class ExampleSpider (scrapy.Spider):
name = "example"
allowed_domains = ["example.com"]
start_urls = (
'http://www.example.com/"',

)

def parse(self, response):

(continues on next page)

155

https://www.crummy.com/software/BeautifulSoup/
https://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
https://lxml.de/
https://www.crummy.com/software/BeautifulSoup/
https://lxml.de/
https://palletsprojects.com/p/jinja/
https://www.djangoproject.com/
https://www.crummy.com/software/BeautifulSoup/

Scrapy Documentation, Release 2.2.0

(continued from previous page)

use lxml to get decent HTML parsing speed
soup = BeautifulSoup (response.text, 'lxml')
yield {

"url": response.url,

"title": soup.hl.string

Note: BeautifulSoup supports several HTML/XML parsers. See BeautifulSoup’s official documentation on
which ones are available.

5.1.3 Did Scrapy «steal» X from Django?

Probably, but we don’t like that word. We think Django is a great open source project and an example to follow, so
we’ve used it as an inspiration for Scrapy.

We believe that, if something is already done well, there’s no need to reinvent it. This concept, besides being one of
the foundations for open source and free software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose to copy ideas from those projects that
have already solved them properly, and focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free to steal from us!

5.1.4 Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP Proxy downloader middleware. See
HttpProxyMiddleware.

5.1.5 How can | scrape an item with attributes in different pages?

See Passing additional data to callback functions.

5.1.6 Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 because of this Twisted bug.

5.1.7 How can | simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

156 Capitulo 5. Solving specific problems

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use
https://www.djangoproject.com/
https://sourceforge.net/projects/pywin32/
https://twistedmatrix.com/trac/ticket/3707

Scrapy Documentation, Release 2.2.0

5.1.8 Does Scrapy crawl in breadth-first or depth-first order?

By default, Scrapy uses a LIFO queue for storing pending requests, which basically means that it crawls in DFO order.
This order is more convenient in most cases.

If you do want to crawl in true BFO order, you can do it by setting the following settings:

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeues.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeues.FifoMemoryQueue'

While pending requests are below the configured values of CONCURRENT_REQUESTS,
CONCURRENT REQUESTS_PER_DOMAIN or CONCURRENT REQUESTS PER_IP, those requests are sent
concurrently. As a result, the first few requests of a crawl rarely follow the desired order. Lowering those settings to 1
enforces the desired order, but it significantly slows down the crawl as a whole.

5.1.9 My Scrapy crawler has memory leaks. What can | do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in Leaks without leaks.

5.1.10 How can | make Scrapy consume less memory?

See previous question.

5.1.11 Can | use Basic HTTP Authentication in my spiders?

Yes, see Ht t pAut hMiddleware.

5.1.12 Why does Scrapy download pages in English instead of my native langua-
ge?

Try changing the default Accept-Language request header by overriding the DEFAULT REQUEST _HEADERS setting.

5.1.13 Where can | find some example Scrapy projects?

See Examples.

5.1.14 Can | run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a spider written in a my_spider.py file
you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

5.1. Frequently Asked Questions 157

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

Scrapy Documentation, Release 2.2.0

5.1.15 | get «Filtered offsite request» messages. How can | fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a problem, so you may not need to fix
them.

Those messages are thrown by the Offsite Spider Middleware, which is a spider middleware (enabled by default)
whose purpose is to filter out requests to domains outside the ones covered by the spider.

For more info see: OffsiteMiddleware.

5.1.16 What is the recommended way to deploy a Scrapy crawler in production?

See Deploying Spiders.

5.1.17 Can | use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter documentation.

5.1.18 Can | return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See the Built-in signals reference to know
which ones.

5.1.19 What does the response status code 999 means?

999 is a custom response status code used by Yahoo sites to throttle requests. Try slowing down the crawling speed by
using a download delay of 2 (or higher) in your spider:

class MySpider (CrawlSpider) :
name = 'myspider'
download_delay = 2

[... rest of the spider code ...]

Or by setting a global download delay in your project with the DOWNLOAD DELAY setting.

5.1.20 Canl call pdb. set_trace () from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you to quickly analyze (and even modify) the response being
processed by your spider, which is, quite often, more useful than plain old pdb . set_trace ().

For more info see Invoking the shell from spiders to inspect responses.

158 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

5.1.21 Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

’scrapy crawl myspider -o items. json

To dump into a CSV file:

’scrapy crawl myspider -o items.csv

To dump into a XML file:

’scrapy crawl myspider -o items.xml

For more information see Feed exports

5.1.22 What’s this huge cryptic __ VIEWSTATE parameter used in some forms?

The _ VIEWSTATE parameter is used in sites built with ASPNET/VB.NET. For more info on how it works see this
page. Also, here’s an example spider which scrapes one of these sites.

5.1.23 What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to build the DOM of the entire feed in
memory, and this can be quite slow and consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use the functions xmliter and csviter
from scrapy.utils.iterators module. In fact, this is what the feed spiders (see Spiders) use under the cover.

5.1.24 Does Scrapy manage cookies automatically?

Yes, Scrapy receives and keeps track of cookies sent by servers, and sends them back on subsequent requests, like any
regular web browser does.

For more info see Requests and Responses and CookiesMiddleware.

5.1.25 How can | see the cookies being sent and received from Scrapy?

Enable the COOKTES _DEBUG setting.

5.1.26 How can |l instruct a spider to stop itself?

Raise the C1oseSpider exception from a callback. For more info see: CloseSpider.

5.1. Frequently Asked Questions 159

https://metacpan.org/pod/release/ECARROLL/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
https://metacpan.org/pod/release/ECARROLL/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm
https://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py

Scrapy Documentation, Release 2.2.0

5.1.27 How can | prevent my Scrapy bot from getting banned?

See Avoiding getting banned.

5.1.28 Should | use spider arguments or settings to configure my spider?

Both spider arguments and settings can be used to configure your spider. There is no strict rule that mandates to use
one or the other, but settings are more suited for parameters that, once set, don’t change much, while spider arguments
are meant to change more often, even on each spider run and sometimes are required for the spider to run at all (for
example, to set the start url of a spider).

To illustrate with an example, assuming you have a spider that needs to log into a site to scrape data, and you only
want to scrape data from a certain section of the site (which varies each time). In that case, the credentials to log in
would be settings, while the url of the section to scrape would be a spider argument.

5.1.29 I'm scraping a XML document and my XPath selector doesn’t return any
items

You may need to remove namespaces. See Removing namespaces.

5.1.30 How to split an item into multiple items in an item pipeline?

Item pipelines cannot yield multiple items per input item. Create a spider middleware instead, and use its
process_spider_output () method for this purpose. For example:

from copy import deepcopy
from itemadapter import is_item, ItemAdapter
class MultiplyItemsMiddleware:

def process_spider_output (self, response, result, spider):
for item in result:
if is_item(item) :
adapter = ItemAdapter (item)
for _ in range (adapter|['multiply _by']):
yield deepcopy (item)

5.1.31 Does Scrapy support IPv6 addresses?

Yes, by setting DNS_RESOLVERt0 scrapy.resolver.CachingHostnameResolver. Note that by doing so,
you lose the ability to set a specific timeout for DNS requests (the value of the DNS_TTMEOUT setting is ignored).

160 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

5.1.32 How to deal with <class 'ValueError'>: filedescriptor out of
range in select () exceptions?

This issue has been reported to appear when running broad crawls in macOS, where the default Twisted reactor
is twisted.internet.selectreactor.SelectReactor. Switching to a different reactor is possible by
using the TWISTED _REACTOR setting.

5.1.33 How can | cancel the download of a given response?

In some situations, it might be useful to stop the download of a certain response. For instance, if you only need the
first part of a large response and you would like to save resources by avoiding the download of the whole body. In that
case, you could attach a handler to the bytes received signal and raise a St opDownload exception. Please
refer to the Stopping the download of a Response topic for additional information and examples.

5.2 Debugging Spiders

This document explains the most common techniques for debugging spiders. Consider the following Scrapy spider
below:

import scrapy
from myproject.items import MyItem

class MySpider (scrapy.Spider) :
name = 'myspider'
start_urls = (
'http://example.com/pagel"’,
'http://example.com/page2’',
)

def parse(self, response):
<processing code not shown>
collect ‘item urls’
for item_url in item urls:
yield scrapy.Request (item_url, self.parse_item)

def parse_item(self, response):
<processing code not shown>
item = MyItem()
populate ‘item’ fields
and extract item details_url
yield scrapy.Request (item_details_url, self.parse_details, cb_kwargs={'item':
—item})

def parse_details(self, response, item):
populate more “item’ fields
return item

Basically this is a simple spider which parses two pages of items (the start_urls). Items also have a details page with
additional information, so we use the cb_kwargs functionality of Request to pass a partially populated item.

5.2. Debugging Spiders 161

https://github.com/scrapy/scrapy/issues/2905
https://twistedmatrix.com/documents/current/api/twisted.internet.selectreactor.SelectReactor.html

Scrapy Documentation, Release 2.2.0

5.2.1 Parse Command

The most basic way of checking the output of your spider is to use the parse command. It allows to check the
behaviour of different parts of the spider at the method level. It has the advantage of being flexible and simple to use,
but does not allow debugging code inside a method.

In order to see the item scraped from a specific url:

$ scrapy parse —-spider=myspider -c parse_item -d 2 <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 2 <<<
Scraped Items ——————————— -
[{'"url': <item_url>}]

Requests ——————————— -
[]

Using the ——verbose or —v option we can see the status at each depth level:

$ scrapy parse —--spider=myspider -c parse_item -d 2 -v <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> DEPTH LEVEL: 1 <<<
Scraped Items ————————————————
[]

Requests —————————mm
[<GET item_details_url>]

>>> DEPTH LEVEL: 2 <<<
Scraped Items ———————— T
[{"url': <item_url>}]

Requests ————————— - -
[]

Checking items scraped from a single start_url, can also be easily achieved using:

$ scrapy parse —-spider=myspider -d 3 'http://example.com/pagel’

5.2.2 Scrapy Shell

While the parse command is very useful for checking behaviour of a spider, it is of little help to check what
happens inside a callback, besides showing the response received and the output. How to debug the situation when
parse_details sometimes receives no item?

Fortunately, the shel1 is your bread and butter in this case (see Invoking the shell from spiders to inspect responses):

from scrapy.shell import inspect_response

def parse_details(self, response, item=None) :
if item:
populate more ‘item fields
return item

(continues on next page)

162 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

(continued from previous page)

else:
inspect_response (response, self)

See also: Invoking the shell from spiders to inspect responses.

5.2.3 Open in browser

Sometimes you just want to see how a certain response looks in a browser, you can use the open_in_browser
function for that. Here is an example of how you would use it:

from scrapy.utils.response import open_in_browser

def parse_details(self, response):
if "item name" not in response.body:
open_in_browser (response)

open_in_browser will open a browser with the response received by Scrapy at that point, adjusting the base tag
so that images and styles are displayed properly.

5.2.4 Logging

Logging is another useful option for getting information about your spider run. Although not as convenient, it comes
with the advantage that the logs will be available in all future runs should they be necessary again:

def parse_details(self, response, item=None) :
if item:
populate more ‘item’ fields
return item
else:
self.logger.warning('No item received for ', response.url)

For more information, check the Logging section.

5.3 Spiders Contracts

New in version 0.15.

Testing spiders can get particularly annoying and while nothing prevents you from writing unit tests the task gets
cumbersome quickly. Scrapy offers an integrated way of testing your spiders by the means of contracts.

This allows you to test each callback of your spider by hardcoding a sample url and check various constraints for
how the callback processes the response. Each contract is prefixed with an @ and included in the docstring. See the
following example:

def parse(self, response):
""" This function parses a sample response. Some contracts are mingled
with this docstring.

@Qurl http://www.amazon.com/s?field-keywords=selfish+gene
@returns items 1 16
@returns requests 0 0

(continues on next page)

5.3. Spiders Contracts 163

https://www.w3schools.com/tags/tag_base.asp

Scrapy Documentation, Release 2.2.0

(continued from previous page)

@scrapes Title Author Year Price

mmn

This callback is tested using three built-in contracts:

class scrapy.contracts.default.UrlContract
This contract (@url) sets the sample URL used when checking other contract conditions for this spider. This
contract is mandatory. All callbacks lacking this contract are ignored when running the checks:

@url url

class scrapy.contracts.default.CallbackKeywordArgumentsContract
This contract (@cb_kwargs) sets the cb_kwargs attribute for the sample request. It must be a valid JSON
dictionary.

’@cb_kwargs {"argl": "valuel", "arg2": "value2", ...}

class scrapy.contracts.default.ReturnsContract
This contract (Rreturns) sets lower and upper bounds for the items and requests returned by the spider. The
upper bound is optional:

’@returns item(s) | request (s) [min [max]]

class scrapy.contracts.default.ScrapesContract
This contract (@scrapes) checks that all the items returned by the callback have the specified fields:

’@scrapes field 1 field_ 2

Use the check command to run the contract checks.

5.3.1 Custom Contracts

If you find you need more power than the built-in Scrapy contracts you can create and load your own contracts in the
project by using the SPTDER _CONTRACTS setting:

SPIDER_CONTRACTS = {
'myproject.contracts.ResponseCheck': 10,
'myproject.contracts.ItemValidate': 10,

Each contract must inherit from Cont ract and can override three methods:
class scrapy.contracts.Contract (method, *args)
Parameters
» method (function) — callback function to which the contract is associated
» args (11ist) - list of arguments passed into the docstring (whitespace separated)

adjust_request_args (args)
This receives a dict as an argument containing default arguments for request object. Request is used
by default, but this can be changed with the request_c1s attribute. If multiple contracts in chain have
this attribute defined, the last one is used.

Must return the same or a modified version of it.

164 Capitulo 5. Solving specific problems

https://docs.python.org/3/library/stdtypes.html#list

Scrapy Documentation, Release 2.2.0

pre_process (response)
This allows hooking in various checks on the response received from the sample request, before it’s being
passed to the callback.

post_process (output)
This allows processing the output of the callback. Iterators are converted listified before being passed to
this hook.

Raise ContractFail from pre_process or post_process if expectations are not met:

class scrapy.exceptions.ContractFail
Error raised in case of a failing contract

Here is a demo contract which checks the presence of a custom header in the response received:

from scrapy.contracts import Contract
from scrapy.exceptions import ContractFail

class HasHeaderContract (Contract) :
""" Demo contract which checks the presence of a custom header

@has_header X-CustomHeader
mmn

name = 'has_header'

def pre_process(self, response):
for header in self.args:
if header not in response.headers:
raise ContractFail ('X-CustomHeader not present')

5.3.2 Detecting check runs

When scrapy check isrunning, the SCRAPY_CHECK environment variable is set to the t rue string. You can use
os.environ to perform any change to your spiders or your settings when scrapy check is used:

import os
import scrapy

class ExampleSpider (scrapy.Spider):
name = 'example'

def _ init_ (self):
if os.environ.get ('SCRAPY_ CHECK'):
pass # Do some scraper adjustments when a check is running

5.4 Common Practices

This section documents common practices when using Scrapy. These are things that cover many topics and don’t often
fall into any other specific section.

5.4. Common Practices 165

https://docs.python.org/3/library/os.html#os.environ

Scrapy Documentation, Release 2.2.0

5.4.1 Run Scrapy from a script

You can use the AP to run Scrapy from a script, instead of the typical way of running Scrapy via scrapy crawl.

Remember that Scrapy is built on top of the Twisted asynchronous networking library, so you need to run it inside the
Twisted reactor.

The first utility you can use to run your spiders is scrapy.crawler.CrawlerProcess. This class will start a
Twisted reactor for you, configuring the logging and setting shutdown handlers. This class is the one used by all Scrapy
commands.

Here’s an example showing how to run a single spider with it.

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider (scrapy.Spider) :
Your spider definition

process = CrawlerProcess (settings={
"FEEDS": {
"items.json": {"format": "Jjson"},

}y
})

process.crawl (MySpider)
process.start () # the script will block here until the crawling is finished

Define settings within dictionary in CrawlerProcess. Make sure to check CrawlerProcess documentation to get
acquainted with its usage details.

If you are inside a Scrapy project there are some additional helpers you can use to import those components wit-
hin the project. You can automatically import your spiders passing their name to CrawlerProcess, and use
get_project_settingsto geta Settings instance with your project settings.

What follows is a working example of how to do that, using the testspiders project as example.

from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings

process = CrawlerProcess (get_project_settings())
'followall' is the name of one of the spiders of the project.

process.crawl ('followall', domain='scrapinghub.com")
process.start () # the script will block here until the crawling is finished

There’s another Scrapy utility that provides more control over the crawling process: scrapy.crawler.
CrawlerRunner. This class is a thin wrapper that encapsulates some simple helpers to run multiple crawlers, but it
won’t start or interfere with existing reactors in any way.

Using this class the reactor should be explicitly run after scheduling your spiders. It’s recommended you use
CrawlerRunner instead of CrawlerProcess if your application is already using Twisted and you want to run
Scrapy in the same reactor.

Note that you will also have to shutdown the Twisted reactor yourself after the spider is finished. This can be achieved
by adding callbacks to the deferred returned by the CrawlerRunner. crawl method.

Here’s an example of its usage, along with a callback to manually stop the reactor after MySpider has finished
running.

166 Capitulo 5. Solving specific problems

https://github.com/scrapinghub/testspiders

Scrapy Documentation, Release 2.2.0

from twisted.internet import reactor

import scrapy

from scrapy.crawler import CrawlerRunner

from scrapy.utils.log import configure_logging

class MySpider (scrapy.Spider) :
Your spider definition

configure_logging ({'LOG_FORMAT': '$% (levelname)s: % (message)s'})
runner = CrawlerRunner ()

d = runner.crawl (MySpider)
d.addBoth (lambda _: reactor.stop())
reactor.run() # the script will block here until the crawling is finished

See also:

Reactor Overview

5.4.2 Running multiple spiders in the same process

By default, Scrapy runs a single spider per process when you run scrapy crawl. However, Scrapy supports running
multiple spiders per process using the internal API.

Here is an example that runs multiple spiders simultaneously:

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpiderl (scrapy.Spider) :
Your first spider definition

class MySpider2 (scrapy.Spider):
Your second spider definition

process = CrawlerProcess()

process.crawl (MySpiderl)

process.crawl (MySpider?2)

process.start () # the script will block here until all crawling jobs are finished

Same example using CrawlerRunner:

import scrapy

from twisted.internet import reactor

from scrapy.crawler import CrawlerRunner

from scrapy.utils.log import configure_logging

class MySpiderl (scrapy.Spider) :

Your first spider definition

class MySpider2 (scrapy.Spider):
Your second spider definition

(continues on next page)

5.4. Common Practices 167

https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html

Scrapy Documentation, Release 2.2.0

(continued from previous page)

configure_logging ()

runner = CrawlerRunner ()
runner.crawl (MySpiderl)
runner.crawl (MySpider2)

d = runner. join()

d.addBoth (lambda _: reactor.stop())

reactor.run() # the script will block here until all crawling jobs are finished

Same example but running the spiders sequentially by chaining the deferreds:

from twisted.internet import reactor, defer
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpiderl (scrapy.Spider) :
Your first spider definition

class MySpider2 (scrapy.Spider):
Your second spider definition

configure_logging ()
runner = CrawlerRunner ()

@defer.inlineCallbacks

def crawl():
yield runner.crawl (MySpiderl)
yield runner.crawl (MySpider2)
reactor.stop ()

crawl ()
reactor.run() # the script will block here until the last crawl call is finished

See also:

Run Scrapy from a script.

5.4.3 Distributed crawls
Scrapy doesn’t provide any built-in facility for running crawls in a distribute (multi-server) manner. However, there
are some ways to distribute crawls, which vary depending on how you plan to distribute them.

If you have many spiders, the obvious way to distribute the load is to setup many Scrapyd instances and distribute
spider runs among those.

If you instead want to run a single (big) spider through many machines, what you usually do is partition the urls to
crawl and send them to each separate spider. Here is a concrete example:

First, you prepare the list of urls to crawl and put them into separate files/urls:

http://somedomain.com/urls-to-crawl/spiderl/partl.list
http://somedomain.com/urls-to-crawl/spiderl/part2.list
http://somedomain.com/urls-to-crawl/spiderl/part3.1list

168 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

Then you fire a spider run on 3 different Scrapyd servers. The spider would receive a (spider) argument part with the
number of the partition to crawl:

curl http://scrapyl.mycompany.com:6800/schedule. json -d project=myproject -d
—spider=spiderl -d part=1
curl http://scrapy2.mycompany.com:6800/schedule. json -d project=myproject -d
—spider=spiderl -d part=2
curl http://scrapy3.mycompany.com:6800/schedule. json -d project=myproject -d
—spider=spiderl -d part=3

(

5.4.4 Avoiding getting banned

Some websites implement certain measures to prevent bots from crawling them, with varying degrees of sophistication.
Getting around those measures can be difficult and tricky, and may sometimes require special infrastructure. Please
consider contacting commercial support if in doubt.

Here are some tips to keep in mind when dealing with these kinds of sites:
= rotate your user agent from a pool of well-known ones from browsers (google around to get a list of them)
= disable cookies (see COOKTES_ENABLED) as some sites may use cookies to spot bot behaviour
= use download delays (2 or higher). See DOWNLOAD DELAY setting.
= if possible, use Google cache to fetch pages, instead of hitting the sites directly

= use a pool of rotating IPs. For example, the free Tor project or paid services like ProxyMesh. An open source
alternative is scrapoxy, a super proxy that you can attach your own proxies to.

= use a highly distributed downloader that circumvents bans internally, so you can just focus on parsing clean
pages. One example of such downloaders is Crawlera

If you are still unable to prevent your bot getting banned, consider contacting commercial support.

5.5 Broad Crawls

Scrapy defaults are optimized for crawling specific sites. These sites are often handled by a single Scrapy spider,
although this is not necessary or required (for example, there are generic spiders that handle any given site thrown at
them).

In addition to this «focused crawl», there is another common type of crawling which covers a large (potentially un-
limited) number of domains, and is only limited by time or other arbitrary constraint, rather than stopping when the
domain was crawled to completion or when there are no more requests to perform. These are called «broad crawls»
and is the typical crawlers employed by search engines.

These are some common properties often found in broad crawls:
= they crawl many domains (often, unbounded) instead of a specific set of sites

= they don’t necessarily crawl domains to completion, because it would be impractical (or impossible) to do so,
and instead limit the crawl by time or number of pages crawled

= they are simpler in logic (as opposed to very complex spiders with many extraction rules) because data is often
post-processed in a separate stage

= they crawl many domains concurrently, which allows them to achieve faster crawl speeds by not being limited
by any particular site constraint (each site is crawled slowly to respect politeness, but many sites are crawled in
parallel)

5.5. Broad Crawls 169

https://scrapy.org/support/
http://www.googleguide.com/cached_pages.html
https://www.torproject.org/
https://proxymesh.com/
https://scrapoxy.io/
https://scrapinghub.com/crawlera
https://scrapy.org/support/

Scrapy Documentation, Release 2.2.0

As said above, Scrapy default settings are optimized for focused crawls, not broad crawls. However, due to its asyn-
chronous architecture, Scrapy is very well suited for performing fast broad crawls. This page summarizes some things
you need to keep in mind when using Scrapy for doing broad crawls, along with concrete suggestions of Scrapy
settings to tune in order to achieve an efficient broad crawl.

5.5.1 Use the right SCHEDULER_PRIORITY QUEUE

Scrapy’s default scheduler priority queue is ' scrapy.pqueues.ScrapyPriorityQueue'. It works best du-
ring single-domain crawl. It does not work well with crawling many different domains in parallel

To apply the recommended priority queue use:

SCHEDULER_PRIORITY_QUEUE = 'scrapy.pqueues.DownloaderAwarePriorityQueue'

5.5.2 Increase concurrency

Concurrency is the number of requests that are processed in parallel. There is a global li-
mit (CONCURRENT_REQUESTS) and an additional limit that can be set either per domain
(CONCURRENT_REQUESTS_PER _DOMAIN) or per IP (CONCURRENT _REQUESTS_PER_IP).

Note: The scheduler priority queue recommended for broad crawls does not support
CONCURRENT_REQUESTS_PER_IP.

The default global concurrency limit in Scrapy is not suitable for crawling many different domains in parallel, so you
will want to increase it. How much to increase it will depend on how much CPU and memory you crawler will have
available.

A good starting point is 100:

CONCURRENT_REQUESTS = 100

But the best way to find out is by doing some trials and identifying at what concurrency your Scrapy process gets CPU
bounded. For optimum performance, you should pick a concurrency where CPU usage is at 80-90 %.

Increasing concurrency also increases memory usage. If memory usage is a concern, you might need to lower your
global concurrency limit accordingly.

5.5.3 Increase Twisted 10 thread pool maximum size

Currently Scrapy does DNS resolution in a blocking way with usage of thread pool. With higher concurrency levels
the crawling could be slow or even fail hitting DNS resolver timeouts. Possible solution to increase the number of
threads handling DNS queries. The DNS queue will be processed faster speeding up establishing of connection and
crawling overall.

To increase maximum thread pool size use:

REACTOR_THREADPOOL_MAXSIZE = 20

170 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

5.5.4 Setup your own DNS

If you have multiple crawling processes and single central DNS, it can act like DoS attack on the DNS server resulting
to slow down of entire network or even blocking your machines. To avoid this setup your own DNS server with local
cache and upstream to some large DNS like OpenDNS or Verizon.

5.5.5 Reduce log level

When doing broad crawls you are often only interested in the crawl rates you get and any errors found. These stats are
reported by Scrapy when using the INFO log level. In order to save CPU (and log storage requirements) you should
not use DEBUG log level when preforming large broad crawls in production. Using DEBUG level when developing
your (broad) crawler may be fine though.

To set the log level use:

LOG_LEVEL = 'INFO'

5.5.6 Disable cookies

Disable cookies unless you really need. Cookies are often not needed when doing broad crawls (search engine crawlers
ignore them), and they improve performance by saving some CPU cycles and reducing the memory footprint of your
Scrapy crawler.

To disable cookies use:

COOKIES_ENABLED = False

5.5.7 Disable retries

Retrying failed HTTP requests can slow down the crawls substantially, specially when sites causes are very slow (or
fail) to respond, thus causing a timeout error which gets retried many times, unnecessarily, preventing crawler capacity
to be reused for other domains.

To disable retries use:

RETRY_ENABLED = False

5.5.8 Reduce download timeout

Unless you are crawling from a very slow connection (which shouldn’t be the case for broad crawls) reduce the
download timeout so that stuck requests are discarded quickly and free up capacity to process the next ones.

To reduce the download timeout use:

DOWNLOAD_TIMEOUT = 15

5.5. Broad Crawls 171

Scrapy Documentation, Release 2.2.0

5.5.9 Disable redirects

Consider disabling redirects, unless you are interested in following them. When doing broad crawls it’s common to
save redirects and resolve them when revisiting the site at a later crawl. This also help to keep the number of request
constant per crawl batch, otherwise redirect loops may cause the crawler to dedicate too many resources on any specific
domain.

To disable redirects use:

REDIRECT_ENABLED False

5.5.10 Enable crawling of «Ajax Crawlable Pages»
Some pages (up to 1 %, based on empirical data from year 2013) declare themselves as ajax crawlable. This means
they provide plain HTML version of content that is usually available only via AJAX. Pages can indicate it in two ways:
1) by using #! in URL - this is the default way;
2) by using a special meta tag - this way is used on «main», «index» website pages.

Scrapy handles (1) automatically; to handle (2) enable AjaxCrawlIMiddleware:

AJAXCRAWL_ENABLED = True

When doing broad crawls it’s common to crawl a lot of «index» web pages; AjaxCrawlMiddleware helps to crawl
them correctly. It is turned OFF by default because it has some performance overhead, and enabling it for focused
crawls doesn’t make much sense.

5.5.11 Crawl in BFO order

Scrapy crawls in DFO order by default.

In broad crawls, however, page crawling tends to be faster than page processing. As a result, unprocessed early requests
stay in memory until the final depth is reached, which can significantly increase memory usage.

Crawl in BFO order instead to save memory.

5.5.12 Be mindful of memory leaks

If your broad crawl shows a high memory usage, in addition to crawling in BFO order and lowering concurrency you
should debug your memory leaks.

5.5.13 Install a specific Twisted reactor

If the crawl is exceeding the system’s capabilities, you might want to try installing a specific Twisted reactor, via the
TWISTED_REACTOR setting.

172 Capitulo 5. Solving specific problems

https://developers.google.com/search/docs/ajax-crawling/docs/getting-started

Scrapy Documentation, Release 2.2.0

5.6 Using your browser’s Developer Tools for scraping

Here is a general guide on how to use your browser’s Developer Tools to ease the scraping process. Today almost all
browsers come with built in Developer Tools and although we will use Firefox in this guide, the concepts are applicable
to any other browser.

In this guide we’ll introduce the basic tools to use from a browser’s Developer Tools by scraping quotes.toscrape.com.

5.6.1 Caveats with inspecting the live browser DOM

Since Developer Tools operate on a live browser DOM, what you’ll actually see when inspecting the page source is not
the original HTML, but a modified one after applying some browser clean up and executing Javascript code. Firefox,
in particular, is known for adding <tbody> elements to tables. Scrapy, on the other hand, does not modify the original
page HTML, so you won’t be able to extract any data if you use <tbody> in your XPath expressions.

Therefore, you should keep in mind the following things:

= Disable Javascript while inspecting the DOM looking for XPaths to be used in Scrapy (in the Developer Tools
settings click Disable JavaScript)

= Never use full XPath paths, use relative and clever ones based on attributes (such as id, class, width, etc)
or any identifying features like contains (@href, 'image').

= Never include <tbody> elements in your XPath expressions unless you really know what you’re doing

5.6.2 Inspecting a website
By far the most handy feature of the Developer Tools is the Inspector feature, which allows you to inspect the un-
derlying HTML code of any webpage. To demonstrate the Inspector, let’s look at the quotes.toscrape.com-site.

On the site we have a total of ten quotes from various authors with specific tags, as well as the Top Ten Tags. Let’s say
we want to extract all the quotes on this page, without any meta-information about authors, tags, etc.

Instead of viewing the whole source code for the page, we can simply right click on a quote and select Inspect
Element (Q), which opens up the Inspector. In it you should see something like this:

5.6. Using your browser’s Developer Tools for scraping 173

https://en.wikipedia.org/wiki/Web_development_tools
http://quotes.toscrape.com
http://quotes.toscrape.com

Scrapy Documentation, Release 2.2.0

i

& L1 Inspector Console [Debugger {} Style Editer () Pedformance dk Memory = Metwork B Storage

+
<!DOCTYPE htmi>
<html lang="en">

<head>»[=)</head>
<body >
¢div class="container">
tthefore

<div class="row header-box" > </div>
<div class="row">
tibefore
<div class="col-md-8">
<div class="quote" itemscopes=

itemtype="http://schema.org/CreativeWork"”>

<span class="text" itemprop="text":»[=
 (= <fspan>
<div class="tags">[=</div>

<fdive
<div class="quote" itemscope="" itemtype="http://schema.org/Creativelork" > =</ div>
<div classz="quote" itemscope="" itemtype="http://schema.org/Creativeklork" >« div>
<div class="quote"” itemscope="" itemtype="http://schema.org/Creativelork”>=</div>
<div class="quote" itemscope="" itemtype="http://schema.org/Creativelork" > =</ div>
<div class="quote" itemscope="" itemtype="http://schema.org/Creativeklork" > =« div>
<div classz="quote" itemscope="" itemtype="http://schema.org/Creativeklork" >« div>
<div class="quote” itemscope="" iltemtype="http://schema.org/CreativeWork” > </div>
<div class="quote"” itemscope="" itemtype="http://schema.org/Creativelork”>=</div>
html * body » div.container * divrow * div.col-md-8 » div.quote > span.text
The interesting part for us is this:
<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">
(...)
(...)
<div class="tags">(...)</div>
</div>

If you hover over the first div directly above the span tag highlighted in the screenshot, you’ll see that the corres-
ponding section of the webpage gets highlighted as well. So now we have a section, but we can’t find our quote text
anywhere.

The advantage of the Inspector is that it automatically expands and collapses sections and tags of a webpage, which
greatly improves readability. You can expand and collapse a tag by clicking on the arrow in front of it or by double
clicking directly on the tag. If we expand the span tag with the class= "text" we will see the quote-text we
clicked on. The Inspector lets you copy XPaths to selected elements. Let’s try it out.

First open the Scrapy shell at http://quotes.toscrape.com/ in a terminal:

$ scrapy shell "http://quotes.toscrape.com/"

Then, back to your web browser, right-click on the span tag, select Copy > XPath and paste it in the Scrapy shell
like so:

>>> response.xpath ('/html/body/div/div[2]/div[1l]/div[1l]/span[l]/text ()"').getall ()
['"“The world as we have created it is a process of our thinking. It cannot be changed,
—without changing our thinking.”']

Adding text () at the end we are able to extract the first quote with this basic selector. But this XPath is not really
that clever. All it does is go down a desired path in the source code starting from html. So let’s see if we can refine
our XPath a bit:

174 Capitulo 5. Solving specific problems

http://quotes.toscrape.com/

Scrapy Documentation, Release 2.2.0

If we check the Inspector again we’ll see that directly beneath our expanded div tag we have nine identical div tags,
each with the same attributes as our first. If we expand any of them, we’ll see the same structure as with our first quote:
Two span tags and one div tag. We can expand each span tag with the class="text" inside our div tags and
see each quote:

<div class="quote" itemscope= itemtype="http://schema.org/CreativeWork">

“The world as we have created it is a process of our thinking. It cannot be
—changed without changing our thinking.”

(...)

<div class="tags">(...)</div>
</div>

With this knowledge we can refine our XPath: Instead of a path to follow, we’ll simply select all span tags with the
class="text" by using the has-class-extension:

>>> response.xpath('//span[has-class ("text")]/text ()").getall()

['“The world as we have created it is a process of our thinking. It cannot be changed
—without changing our thinking.”',

'“It is our choices, Harry, that show what we truly are, far more than our abilities.”
“"l

'“There are only two ways to live your life. One 1is as though nothing is a miracle.
—The other is as though everything is a miracle.”',

-]

And with one simple, cleverer XPath we are able to extract all quotes from the page. We could have constructed a loop
over our first XPath to increase the number of the last div, but this would have been unnecessarily complex and by
simply constructing an XPath with has—class ("text") we were able to extract all quotes in one line.

The Inspector has a lot of other helpful features, such as searching in the source code or directly scrolling to an element
you selected. Let’s demonstrate a use case:

Say you want to find the Next button on the page. Type Next into the search bar on the top right of the Inspector.
You should get two results. The firstis a 11 tag with the class="next", the second the text of an a tag. Right click
on the a tag and select Scroll into View. If you hover over the tag, you’ll see the button highlighted. From here
we could easily create a Link Extractor to follow the pagination. On a simple site such as this, there may not be the
need to find an element visually but the Scroll into View function can be quite useful on complex sites.

Note that the search bar can also be used to search for and test CSS selectors. For example, you could search for
span.text to find all quote texts. Instead of a full text search, this searches for exactly the span tag with the
class="text" in the page.

5.6.3 The Network-tool

While scraping you may come across dynamic webpages where some parts of the page are loaded dynamically through
multiple requests. While this can be quite tricky, the Network-tool in the Developer Tools greatly facilitates this task.
To demonstrate the Network-tool, let’s take a look at the page quotes.toscrape.com/scroll.

The page is quite similar to the basic quotes.toscrape.com-page, but instead of the above-mentioned Next button, the
page automatically loads new quotes when you scroll to the bottom. We could go ahead and try out different XPaths
directly, but instead we’ll check another quite useful command from the Scrapy shell:

$ scrapy shell "quotes.toscrape.com/scroll"
(...)

>>> view (response)

5.6. Using your browser’s Developer Tools for scraping 175

https://parsel.readthedocs.io/en/latest/usage.html#other-xpath-extensions
http://quotes.toscrape.com/scroll
http://quotes.toscrape.com

Scrapy Documentation, Release 2.2.0

A browser window should open with the webpage but with one crucial difference: Instead of the quotes we just see a
greenish bar with the word Loading. . ..

Quotes to Scrape

Login

Loading...

The view (response) command let’s us view the response our shell or later our spider receives from the server.
Here we see that some basic template is loaded which includes the title, the login-button and the footer, but the
quotes are missing. This tells us that the quotes are being loaded from a different request than quotes.toscrape/
scroll.

If you click on the Net work tab, you will probably only see two entries. The first thing we do is enable persistent logs
by clicking on Persist Logs. If this option is disabled, the log is automatically cleared each time you navigate to
a different page. Enabling this option is a good default, since it gives us control on when to clear the logs.

If we reload the page now, you’ll see the log get populated with six new requests.

@ O3 Inspector Consele [Debugger {} Style Editor @- Performance {0 Memory = Metwork & Storage H e x
Tl[Filter LR | All HTML €55 15 X¥HR Fonts Images Media WS Other | Persist Logs Disable cache Mo throttling ¢ HaR 2
Sratus Methad File Dormain Cauge Type Transferred Size 0 ms E:Sh“in 2,73 min

290 otestosca.. styesheet |
GET scrol B quotestescra.. document him 127 kB 2.50 kB - 23r

GET cssMamily=Raleway:40.. @ fonts.gocglea., stylesheet css B61 B

GET & quotestoscra.,

@ 8 requests Fimish:

Here we see every request that has been made when reloading the page and can inspect each request and its response.
So let’s find out where our quotes are coming from:

First click on the request with the name scroll. On the right you can now inspect the request. In Headers you’ll
find details about the request headers, such as the URL, the method, the IP-address, and so on. We’ll ignore the other
tabs and click directly on Response.

What you should see in the Preview pane is the rendered HTML-code, that is exactly what we saw when we called
view (response) in the shell. Accordingly the t ype of the request in the log is html. The other requests have
types like css or js, but what interests us is the one request called quotes?page=1 with the type json.

If we click on this request, we see that the request URL is http://quotes.toscrape.com/api/quotes?
page=1 and the response is a JSON-object that contains our quotes. We can also right-click on the request and open
Open in new tab to get a better overview.

176 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

JSOM FawData Hesders

San

Save Copy

author/show/9816. Albert_Einstein

Albert Einstein
Lug Albert-Einstedlr
B "change"

deep-thoughts"

text *The world as we have created it is a process of our thinking. It camnot be changed withowt changing cur thinking.*"

goodreads_1ink author/show/ 18T7326.7_K_Rowling

Lug J-K-Rowling

a "abilities”

choices”

With this response we can now easily parse the JSON-object and also request each page to get every quote on the site:

import scrapy
import Jjson

class QuoteSpider (scrapy.Spider):

name = 'quote'
allowed_domains = ['quotes.toscrape.com']
page = 1

start_urls = ['http://quotes.toscrape.com/api/quotes?page=1"]

def parse(self, response):

data = Jjson.loads (response.text)

for quote in data["quotes"]:
yield {"quote": quote["text"]}

if data["has _next"]:
self.page += 1
url = "http://quotes.toscrape.com/api/quotes?page={}".format (self.page)
yield scrapy.Request (url=url, callback=self.parse)

This spider starts at the first page of the quotes-API. With each response, we parse the response.text and
assign it to data. This lets us operate on the JSON-object like on a Python dictionary. We iterate through
the quotes and print out the quote ["text"]. If the handy has_next element is true (try loading quo-
tes.toscrape.com/api/quotes?page=10 in your browser or a page-number greater than 10), we increment the page
attribute and yield a new request, inserting the incremented page-number into our url.

In more complex websites, it could be difficult to easily reproduce the requests, as we could need to add headers or
cookies to make it work. In those cases you can export the requests in cURL format, by right-clicking on each of
them in the network tool and using the from curl () method to generate an equivalent request:

from scrapy import Request

request = Request.from_curl (
"curl 'http://quotes.toscrape.com/api/quotes?page=1' -H 'User—-Agent: Mozil"
"la/5.0 (X11; Linux x86_64; rv:67.0) Gecko/20100101 Firefox/67.0' —H 'Acce"

(continues on next page)

5.6. Using your browser’s Developer Tools for scraping 177

http://quotes.toscrape.com/api/quotes?page=10
http://quotes.toscrape.com/api/quotes?page=10
https://curl.haxx.se/

Scrapy Documentation, Release 2.2.0

(continued from previous page)

"pt: */%' —-H 'Accept-Language: ca,en-US;g=0.7,en;g=0.3"'" —-—-compressed -H 'X"
"-Requested-With: XMLHttpRequest' -H 'Proxy-Authorization: Basic QFRLLTAzM"
"ZEWZTAXLTKSMWUtNDFiNC1iZWRmMLTJIJNGI4M2ZiNDBmNDpAVEstMDMzMTBIMDEtOTkxZS00MW"
"IOLWJ1ZGYtMmMOYjgzZmIOMGYO' —-H 'Connection: keep-alive' -H 'Referer: http"
"://quotes.toscrape.com/scroll' -H 'Cache-Control: max-age=0'")

Alternatively, if you want to know the arguments needed to recreate that request you can use the scrapy.utils.
curl.curl_to_request_kwargs () function to get a dictionary with the equivalent arguments.

Note that to translate a cURL command into a Scrapy request, you may use curl2scrapy.

As you can see, with a few inspections in the Network-tool we were able to easily replicate the dynamic requests of
the scrolling functionality of the page. Crawling dynamic pages can be quite daunting and pages can be very complex,
but it (mostly) boils down to identifying the correct request and replicating it in your spider.

5.7 Selecting dynamically-loaded content

Some webpages show the desired data when you load them in a web browser. However, when you download them
using Scrapy, you cannot reach the desired data using selectors.

When this happens, the recommended approach is to find the data source and extract the data from it.

If you fail to do that, and you can nonetheless access the desired data through the DOM from your web browser, see
Pre-rendering JavaScript.

5.7.1 Finding the data source

To extract the desired data, you must first find its source location.

If the data is in a non-text-based format, such as an image or a PDF document, use the network tool of your web
browser to find the corresponding request, and reproduce it.

If your web browser lets you select the desired data as text, the data may be defined in embedded JavaScript code, or
loaded from an external resource in a text-based format.

In that case, you can use a tool like wgrep to find the URL of that resource.

If the data turns out to come from the original URL itself, you must inspect the source code of the webpage to determine
where the data is located.

If the data comes from a different URL, you will need to reproduce the corresponding request.

5.7.2 Inspecting the source code of a webpage

Sometimes you need to inspect the source code of a webpage (not the DOM) to determine where some desired data is
located.

Use Scrapy’s fetch command to download the webpage contents as seen by Scrapy:

scrapy fetch --nolog https://example.com > response.html

If the desired data is in embedded JavaScript code within a <script /> element, see Parsing JavaScript code.

If you cannot find the desired data, first make sure it’s not just Scrapy: download the webpage with an HTTP client
like curl or wget and see if the information can be found in the response they get.

178 Capitulo 5. Solving specific problems

https://michael-shub.github.io/curl2scrapy/
https://github.com/stav/wgrep
https://curl.haxx.se/
https://www.gnu.org/software/wget/

Scrapy Documentation, Release 2.2.0

If they get a response with the desired data, modify your Scrapy Request to match that of the other HTTP client.
For example, try using the same user-agent string (USER_AGENT) or the same headers.

If they also get a response without the desired data, you’ll need to take steps to make your request more similar to that
of the web browser. See Reproducing requests.

5.7.3 Reproducing requests

Sometimes we need to reproduce a request the way our web browser performs it.

Use the network tool of your web browser to see how your web browser performs the desired request, and try to
reproduce that request with Scrapy.

It might be enough to yield a Request with the same HTTP method and URL. However, you may also need to
reproduce the body, headers and form parameters (see FormRequest) of that request.

As all major browsers allow to export the requests in cURL format, Scrapy incorporates the method from curl ()
to generate an equivalent Request from a cURL command. To get more information visit request from curl inside
the network tool section.

Once you get the expected response, you can extract the desired data from it.

You can reproduce any request with Scrapy. However, some times reproducing all necessary requests may not seem
efficient in developer time. If that is your case, and crawling speed is not a major concern for you, you can alternatively
consider JavaScript pre-rendering.

If you get the expected response sometimes, but not always, the issue is probably not your request, but the target server.
The target server might be buggy, overloaded, or banning some of your requests.

Note that to translate a cURL command into a Scrapy request, you may use curl2scrapy.

5.7.4 Handling different response formats
Once you have a response with the desired data, how you extract the desired data from it depends on the type of
response:

= [f the response is HTML or XML, use selectors as usual.

= [f the response is JSON, use json. loads () to load the desired data from response. text:

’data = json.loads (response.text)

If the desired data is inside HTML or XML code embedded within JSON data, you can load that HTML or
XML code into a Selector and then use it as usual:

’ selector = Selector(datal['html'])

= [If the response is JavaScript, or HTML with a <script/> element containing the desired data, see Parsing
JavaScript code.

= If the response is CSS, use a regular expression to extract the desired data from response. text.

= [f the response is an image or another format based on images (e.g. PDF), read the response as bytes from
response.body and use an OCR solution to extract the desired data as text.

For example, you can use pytesseract. To read a table from a PDF, tabula-py may be a better choice.

= [f the response is SVG, or HTML with embedded SVG containing the desired data, you may be able to extract
the desired data using selectors, since SVG is based on XML.

5.7. Selecting dynamically-loaded content 179

https://curl.haxx.se/
https://michael-shub.github.io/curl2scrapy/
https://docs.python.org/3/library/json.html#json.loads
https://docs.python.org/3/library/re.html
https://github.com/madmaze/pytesseract
https://github.com/chezou/tabula-py

Scrapy Documentation, Release 2.2.0

Otherwise, you might need to convert the SVG code into a raster image, and handle that raster image.

5.7.5 Parsing JavaScript code

If the desired data is hardcoded in JavaScript, you first need to get the JavaScript code:

= If the JavaScript code is in a JavaScript file, simply read response. text.

» [If the JavaScript code is within a <script /> element of an HTML page, use selectors to extract the text within

that <script/> element.

Once you have a string with the JavaScript code, you can extract the desired data from it:

= You might be able to use a regular expression to extract the desired data in JSON format, which you can then

parse with json.loads ().

For example, if the JavaScript code contains a separate line like var data = {"field": "value"};

you can extract that data as follows:

>>> pattern = r'\bvar\s+data\s+ =\s* (\{.x2\})\s*;\sx\n'

>>> json_data = response.css('script::text').re_first (pattern)
>>> json.loads (json_data)

{'field': 'value'}

= chompjs provides an API to parse JavaScript objects into a dict.

For example, if the JavaScript code contains var data = {field: "value", secondField:

"second value"}; you can extract that data as follows:

>>> import chompijs

>>> javascript = response.css('script::text').get ()
>>> data = chompjs.parse_js_object (javascript)

>>> data

{'"field': 'value', 'secondField': 'second value'}

= Otherwise, use js2xml to convert the JavaScript code into an XML document that you can parse using selectors.

For example, if the JavaScript code contains var data = {field: "value"}; you can extract that data

as follows:

>>> import js2xml
>>> import lxml.etree
>>> from parsel import Selector

>>> javascript = response.css('script::text') .get ()

>>> xml = lxml.etree.tostring(js2xml.parse(javascript), encoding='unicode')
>>> selector = Selector (text=xml)

>>> selector.css('var[name="data"]") .get ()

—~</object></var>"'

'<var name="data"><object><property name="field"><string>value</string></property>

180 Capitulo 5. Solving specific problems

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/json.html#json.loads
https://github.com/Nykakin/chompjs
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/scrapinghub/js2xml

Scrapy Documentation, Release 2.2.0

5.7.6 Pre-rendering JavaScript

On webpages that fetch data from additional requests, reproducing those requests that contain the desired data is the
preferred approach. The effort is often worth the result: structured, complete data with minimum parsing time and
network transfer.

However, sometimes it can be really hard to reproduce certain requests. Or you may need something that no request
can give you, such as a screenshot of a webpage as seen in a web browser.

In these cases use the Splash JavaScript-rendering service, along with scrapy-splash for seamless integration.
Splash returns as HTML the DOM of a webpage, so that you can parse it with selectors. It provides great flexibility
through configuration or scripting.

If you need something beyond what Splash offers, such as interacting with the DOM on-the-fly from Python code
instead of using a previously-written script, or handling multiple web browser windows, you might need to use a
headless browser instead.

5.7.7 Using a headless browser

A headless browser is a special web browser that provides an API for automation.

The easiest way to use a headless browser with Scrapy is to use Selenium, along with scrapy-selenium for seamless
integration.

5.8 Debugging memory leaks

In Scrapy, objects such as requests, responses and items have a finite lifetime: they are created, used for a while, and
finally destroyed.

From all those objects, the Request is probably the one with the longest lifetime, as it stays waiting in the Scheduler
queue until it’s time to process it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk of accumulating them in memory without
releasing them properly and thus causing what is known as a «memory leak».

To help debugging memory leaks, Scrapy provides a built-in mechanism for tracking objects references called trackref,
and you can also use a third-party library called muppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the 7elnet Console.

5.8.1 Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the Scrapy developer passes objects re-
ferenced in Requests (for example, using the ch_kwargs or meta attributes or the request callback function) and
that effectively bounds the lifetime of those referenced objects to the lifetime of the Request. This is, by far, the most
common cause of memory leaks in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some of those spiders could be «leaking» and
thus affecting the rest of the other (well-written) spiders when they get to run concurrently, which, in turn, affects the
whole crawling process.

The leak could also come from a custom middleware, pipeline or extension that you have written, if you are not
releasing the (previously allocated) resources properly. For example, allocating resources on spider._opened but
not releasing them on spider_closed may cause problems if you're running multiple spiders per process.

5.8. Debugging memory leaks 181

https://github.com/scrapinghub/splash
https://github.com/scrapy-plugins/scrapy-splash
https://splash.readthedocs.io/en/stable/api.html
https://splash.readthedocs.io/en/stable/scripting-tutorial.html
https://en.wikipedia.org/wiki/Headless_browser
https://www.selenium.dev/
https://github.com/clemfromspace/scrapy-selenium

Scrapy Documentation, Release 2.2.0

Too Many Requests?

By default Scrapy keeps the request queue in memory; it includes Request objects and all objects referenced in
Request attributes (e.g. in cb_kwargs and meta). While not necessarily a leak, this can take a lot of memory.
Enabling persistent job queue could help keeping memory usage in control.

5.8.2 Debugging memory leaks with trackref
trackref is a module provided by Scrapy to debug the most common cases of memory leaks. It basically tracks the
references to all live Request, Response, Item, Spider and Selector objects.

You can enter the telnet console and inspect how many objects (of the classes mentioned above) are currently alive
using the prefs () function which is an alias to the print_live refs () function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1ls ago
Selector 2 oldest: 0Os ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the «age» of the oldest object in each class. If you’re running multiple spiders
per process chances are you can figure out which spider is leaking by looking at the oldest request or response. You
can get the oldest object of each class using the get_oldest () function (from the telnet console).

Which objects are tracked?

The objects tracked by t rackrefs are all from these classes (and all its subclasses):
" scrapy.http.Request
m scrapy.http.Response
" scrapy.item.Item
m scrapy.selector.Selector

" scrapy.spiders.Spider

A real example

Let’s see a concrete example of a hypothetical case of memory leaks. Suppose we have some spider with a line similar
to this one:

o

return Request ("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
callback=self.parse, cb_kwargs={'referer': response})

That line is passing a response reference inside a request which effectively ties the response lifetime to the requests”
one, and that would definitely cause memory leaks.

Let’s see how we can discover the cause (without knowing it a priori, of course) by using the t rackref tool.

After the crawler is running for a few minutes and we notice its memory usage has grown a lot, we can enter its telnet
console and check the live references:

182 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
Selector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is definitely suspicious, as responses should
have a relatively short lifetime compared to Requests. The number of responses is similar to the number of requests,
so it looks like they are tied in a some way. We can now go and check the code of the spider to discover the nasty line
that is generating the leaks (passing response references inside requests).

Sometimes extra information about live objects can be helpful. Let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest ('HtmlResponse')

>>> r.url
'http://www.somenastyspider.com/product.php?pid=123"

If you want to iterate over all objects, instead of getting the oldest one, you can use the scrapy.utils.
trackref.iter_all () function:

>>> from scrapy.utils.trackref import iter_all

>>> [r.url for r in iter_all ('HtmlResponse')]

["http://www.somenastyspider.com/product.php?pid=123",
'http://www.somenastyspider.com/product.php?pid=584",
-]

Too many spiders?

If your project has too many spiders executed in parallel, the output of prefs () can be difficult to read. For this
reason, that function has a 1 gnore argument which can be used to ignore a particular class (and all its subclases). For
example, this won’t show any live references to spiders:

>>> from scrapy.spiders import Spider
>>> prefs (ignore=Spider)

scrapy.utils.trackref module

Here are the functions available in the t rackref module.

class scrapy.utils.trackref.object_ref
Inherit from this class if you want to track live instances with the t rackre £ module.

scrapy.utils.trackref.print_live_re€fs (class_name, ignore=NoneType)
Print a report of live references, grouped by class name.

Parameters ignore (class or classes tuple) — if given, all objects from the specified
class (or tuple of classes) will be ignored.

scrapy.utils.trackref.get_oldest (class_name)
Return the oldest object alive with the given class name, or None if none is found. Use print_Ilive refs()
first to get a list of all tracked live objects per class name.

5.8. Debugging memory leaks 183

Scrapy Documentation, Release 2.2.0

scrapy.utils.trackref.iter_all (class_name)
Return an iterator over all objects alive with the given class name, or None if none is found. Use
print_live refs () first to get alist of all tracked live objects per class name.

5.8.3 Debugging memory leaks with muppy

trackref provides a very convenient mechanism for tracking down memory leaks, but it only keeps track of the
objects that are more likely to cause memory leaks. However, there are other cases where the memory leaks could
come from other (more or less obscure) objects. If this is your case, and you can’t find your leaks using t rackref,
you still have another resource: the muppy library.

You can use muppy from Pympler.

If you use pip, you can install muppy with the following command:

pip install Pympler

Here’s an example to view all Python objects available in the heap using muppy:

>>> from pympler import muppy
>>> all_objects = muppy.get_objects ()
>>> len(all_objects)

28667
>>> from pympler import summary
>>> suml = summary.summarize (all_objects)

>>> summary.print_ (suml)

types | # objects | total size
____________________ = | === —= | = e
<class 'str | 9822 | 1.10 MB

<class 'dict | 1658 | 856.62 KB

<class 'type | 436 | 443.60 KB

<class 'code | 2974 | 419.56 KB

<class '_io.BufferedWriter | 2 256.34 KB

<class 'set | 420 | 159.88 KB

<class '_io.BufferedReader | 1] 128.17 KB

<class 'wrapper_descriptor | 1130 | 88.28 KB

<class 'tuple | 1304 | 86.57 KB

<class 'weakref | 1013 | 79.14 KB

<class 'builtin_function_or_method | 958 | 67.36 KB
<class 'method_descriptor | 865 | 60.82 KB

<class 'abc.ABCMeta | 62 | 59.96 KB

<class 'list | 446 | 58.52 KB

<class 'int | 1425 | 43.20 KB

For more info about muppy, refer to the muppy documentation.

5.8.4 Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will only increase, but never decrease.
Unfortunately, this could happen even though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to the operating system in some cases.
For more information on this issue see:

= Python Memory Management

= Python Memory Management Part 2

184 Capitulo 5. Solving specific problems

https://pypi.org/project/Pympler/
https://pythonhosted.org/Pympler/muppy.html
https://www.evanjones.ca/python-memory.html
https://www.evanjones.ca/python-memory-part2.html

Scrapy Documentation, Release 2.2.0

s Python Memory Management Part 3

The improvements proposed by Evan Jones, which are detailed in this paper, got merged in Python 2.5, but this only
reduces the problem, it doesn’t fix it completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more objects allocated in it anymore. This
means that fragmentation is a large issue. An application could have many megabytes of free memory,
scattered throughout all the arenas, but it will be unable to free any of it. This is a problem experienced
by all memory allocators. The only way to solve it is to move to a compacting garbage collector, which is
able to move objects in memory. This would require significant changes to the Python interpreter.

To keep memory consumption reasonable you can split the job into several smaller jobs or enable persistent job queue
and stop/start spider from time to time.

5.9 Downloading and processing files and images

Scrapy provides reusable item pipelines for downloading files attached to a particular item (for example, when you
scrape products and also want to download their images locally). These pipelines share a bit of functionality and
structure (we refer to them as media pipelines), but typically you’ll either use the Files Pipeline or the Images Pipeline.

Both pipelines implement these features:

= Avoid re-downloading media that was downloaded recently

= Specifying where to store the media (filesystem directory, Amazon S3 bucket, Google Cloud Storage bucket)
The Images Pipeline has a few extra functions for processing images:

= Convert all downloaded images to a common format (JPG) and mode (RGB)

» Thumbnail generation

= Check images width/height to make sure they meet a minimum constraint

The pipelines also keep an internal queue of those media URLs which are currently being scheduled for download,
and connect those responses that arrive containing the same media to that queue. This avoids downloading the same
media more than once when it’s shared by several items.

5.9.1 Using the Files Pipeline

The typical workflow, when using the FilesPipeline goes like this:
1. In a Spider, you scrape an item and put the URLSs of the desired intoa file_urls field.
2. The item is returned from the spider and goes to the item pipeline.

3. When the item reaches the FilesPipeline, the URLs in the file_urls field are scheduled for download
using the standard Scrapy scheduler and downloader (which means the scheduler and downloader middlewa-
res are reused), but with a higher priority, processing them before other pages are scraped. The item remains
«locked» at that particular pipeline stage until the files have finish downloading (or fail for some reason).

4. When the files are downloaded, another field (£ i 1es) will be populated with the results. This field will contain
a list of dicts with information about the downloaded files, such as the downloaded path, the original scraped
url (taken from the £file_urls field), the file checksum and the file status. The files in the list of the files
field will retain the same order of the original £ile_urls field. If some file failed downloading, an error will
be logged and the file won’t be present in the £iles field.

5.9. Downloading and processing files and images 185

https://www.evanjones.ca/python-memory-part3.html
https://www.evanjones.ca/memoryallocator/

Scrapy Documentation, Release 2.2.0

5.9.2 Using the Images Pipeline

Using the TmagesPipelineisalotlike using the FilesPipeline, except the default field names used are diffe-
rent: you use image_urls for the image URLs of an item and it will populate an images field for the information

about the downloaded images.

The advantage of using the TmagesPipeline for image files is that you can configure some extra functions like

generating thumbnails and filtering the images based on their size.

The Images Pipeline uses Pillow for thumbnailing and normalizing images to JPEG/RGB format, so you need to install
this library in order to use it. Python Imaging Library (PIL) should also work in most cases, but it is known to cause

troubles in some setups, so we recommend to use Pillow instead of PIL.

5.9.3 Enabling your Media Pipeline

To enable your media pipeline you must first add it to your project ITEM PIPELINES setting.

For Images Pipeline, use:

’ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 1}

For Files Pipeline, use:

’ITEM_PIPELINES = {'scrapy.pipelines.files.FilesPipeline': 1}

Note: You can also use both the Files and Images Pipeline at the same time.

Then, configure the target storage setting to a valid value that will be used for storing the downloaded images. Ot-
herwise the pipeline will remain disabled, even if you include it in the TTEM PIPELINES setting.

For the Files Pipeline, set the FTLES STORE setting:

’ FILES_STORE = '/path/to/valid/dir'

For the Images Pipeline, set the TMAGES _STORE setting:

’IMAGES_STORE = '/path/to/valid/dir'

5.9.4 Supported Storage

File system storage

The files are stored using a SHA 1 hash of their URLSs for the file names.

For example, the following image URL:

’http://www.example.com/image.jpg

Whose SHA1 hash is:

’3afec3b4765f8f0a07b78f98007b83f013567a0a

Will be downloaded and stored in the following file:

186

Capitulo 5.

Solving specific problems

https://github.com/python-pillow/Pillow
http://www.pythonware.com/products/pil/
https://github.com/python-pillow/Pillow
https://en.wikipedia.org/wiki/SHA_hash_functions

Scrapy Documentation, Release 2.2.0

<IMAGES_STORE>/full/3afec3b4765£8£f0a07b78£98c07b83£f013567a0a. jpg

Where:
= <IMAGES_STORE> is the directory defined in TMAGES_STORE setting for the Images Pipeline.

= full is a sub-directory to separate full images from thumbnails (if used). For more info see Thumbnail gene-
ration for images.

FTP server storage

New in version 2.0.

FILES _STORE and TMAGES_STORE can point to an FTP server. Scrapy will automatically upload the files to the
server.

FILES_ STORE and ITMAGES_STORE should be written in one of the following forms:

ftp://username:password@address:port/path
ftp://address:port/path

If username and password are not provided, they are taken from the #TP_USER and FTP_PASSWORD settings
respectively.

FTP supports two different connection modes: active or passive. Scrapy uses the passive connection mode by default.
To use the active connection mode instead, set the FEED STORAGE_FTP_ACTIVE setting to True.

Amazon S3 storage

FILES_STORE and TMAGES_STORE can represent an Amazon S3 bucket. Scrapy will automatically upload the
files to the bucket.

For example, this is a valid TMAGES_STORE value:

IMAGES_STORE = 's3://bucket/images'

You can modify the Access Control List (ACL) policy used for the stored files, which is defined by the
FILES _STORE_S3_ACL and IMAGES_STORE_S3 ACL settings. By default, the ACL is set to private. To
make the files publicly available use the public-read policy:

IMAGES_STORE_S3_ACL = 'public-read'

For more information, see canned ACLs in the Amazon S3 Developer Guide.

Because Scrapy uses botocore internally you can also use other S3-like storages. Storages like self-hosted Minio
or s3.scality. All you need to do is set endpoint option in you Scrapy settings:

AWS_ENDPOINT_URL = 'http://minio.example.com:9000"

For self-hosting you also might feel the need not to use SSL and not to verify SSL connection:

AWS_USE_SSL = False # or True (None by default)
AWS_VERIFY = False # or True (None by default)

5.9. Downloading and processing files and images 187

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://github.com/minio/minio
https://s3.scality.com/

Scrapy Documentation, Release 2.2.0

Google Cloud Storage

FILES STORE and IMAGES STORE can represent a Google Cloud Storage bucket. Scrapy will automatically
upload the files to the bucket. (requires google-cloud-storage)

For example, these are valid TMAGES _STORE and GCS_PROJECT _ID settings:

IMAGES_STORE = 'gs://bucket/images/'
GCS_PROJECT_ID = 'project_id'

For information about authentication, see this documentation.

You can modify the Access Control List (ACL) policy used for the stored files, which is defined by the
FILES STORE_GCS_ACL and IMAGES_STORE_GCS_ACL settings. By default, the ACL is set to '' (empty
string) which means that Cloud Storage applies the bucket’s default object ACL to the object. To make the files
publicly available use the publicRead policy:

IMAGES_STORE_GCS_ACL = 'publicRead'

For more information, see Predefined ACLs in the Google Cloud Platform Developer Guide.

5.9.5 Usage example

In order to use a media pipeline, first enable it.

Then, if a spider returns an item object with the URLs field (file_urls or image_urls, for the Files or Images
Pipeline respectively), the pipeline will put the results under the respective field (files or images).

When using item types for which fields are defined beforehand, you must define both the URLs field and the results
field. For example, when using the images pipeline, items must define both the image_urls and the images field.
For instance, using the I'tem class:

import scrapy

class MyItem(scrapy.Item):
... other item fields
image_urls = scrapy.Field()
images = scrapy.Field()

If you want to use another field name for the URLs key or for the results key, it is also possible to override it.

For the Files Pipeline, set FTLES_URLS_FIELD and/or FILES_RESULT_FIELD settings:

FILES_URLS_FIELD = 'field _name_for_your_files_urls'
FILES_RESULT_FIELD = 'field_name_for_your_processed_files'

For the Images Pipeline, set TMAGES_URLS_FIELD and/or IMAGES RESULT _FIELD settings:

IMAGES_URLS_FIELD = 'field name_for_ your_images_urls'
IMAGES_RESULT_FIELD = 'field_name_for_ your_processed_images'

If you need something more complex and want to override the custom pipeline behaviour, see Extending the Media
Pipelines.

If you have multiple image pipelines inheriting from ImagePipeline and you want to have different settings in dif-
ferent pipelines you can set setting keys preceded with uppercase name of your pipeline class. E.g. if your pipe-
line is called MyPipeline and you want to have custom IMAGES_URLS_FIELD you define setting MYPIPELI-
NE_IMAGES_URLS_FIELD and your custom settings will be used.

188 Capitulo 5. Solving specific problems

https://cloud.google.com/storage/docs/reference/libraries#client-libraries-install-python
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/storage/docs/access-control/lists#predefined-acl

Scrapy Documentation, Release 2.2.0

5.9.6 Additional features
File expiration
The Image Pipeline avoids downloading files that were downloaded recently. To adjust this retention delay use the

FILES EXPIRES setting (or IMAGES_EXPIRES, in case of Images Pipeline), which specifies the delay in number
of days:

120 days of delay for files expiration
FILES_EXPIRES = 120

30 days of delay for images expiration
IMAGES_EXPIRES = 30

The default value for both settings is 90 days.

If you have pipeline that subclasses FilesPipeline and you’d like to have different setting for it you can set setting keys
preceded by uppercase class name. E.g. given pipeline class called MyPipeline you can set setting key:

MYPIPELINE_FILES_EXPIRES = 180

and pipeline class MyPipeline will have expiration time set to 180.

Thumbnail generation for images

The Images Pipeline can automatically create thumbnails of the downloaded images. In order to use this feature,
you must set TMAGES_THUMBS to a dictionary where the keys are the thumbnail names and the values are their
dimensions.

For example:

IMAGES_THUMBS = {
'small': (50, 50),
'big': (270, 270),

When you use this feature, the Images Pipeline will create thumbnails of the each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>. jpg

Where:
= <size_name> is the one specified in the TMAGES_THUMBS dictionary keys (small, big, etc)
= <image_id> is the SHAI hash of the image url

Example of image files stored using small and big thumbnail names:

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aallfab722a90a24. jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aallfab722a90a24. jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aallfab722a90a24. jpg

The first one is the full image, as downloaded from the site.

5.9. Downloading and processing files and images 189

https://en.wikipedia.org/wiki/SHA_hash_functions

Scrapy Documentation, Release 2.2.0

Filtering out small images

When using the Images Pipeline, you can drop images which are too small, by specifying the minimum allowed size
inthe TMAGES_MIN_HEIGHT and TMAGES_MIN_WIDTH settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note: The size constraints don’t affect thumbnail generation at all.

It is possible to set just one size constraint or both. When setting both of them, only images that satisfy both minimum
sizes will be saved. For the above example, images of sizes (105 x 105) or (105 x 200) or (200 x 105) will all be
dropped because at least one dimension is shorter than the constraint.

By default, there are no size constraints, so all images are processed.

Allowing redirections

By default media pipelines ignore redirects, i.e. an HTTP redirection to a media file URL request will mean the media
download is considered failed.

To handle media redirections, set this setting to True:

MEDIA_ALLOW_REDIRECTS = True

5.9.7 Extending the Media Pipelines

See here the methods that you can override in your custom Files Pipeline:

class scrapy.pipelines.files.FilesPipeline

file_path (self, request, response=None, info=None)
This method is called once per downloaded item. It returns the download path of the file originating from
the specified response.

In addition to response, this method receives the original request and info.
You can override this method to customize the download path of each file.

For example, if file URLs end like regular paths (e.g. https://example.com/a/b/c/foo.png),
you can use the following approach to download all files into the £iles folder with their original filena-
mes (e.g. files/foo.png):

import os
from urllib.parse import urlparse

from scrapy.pipelines.files import FilesPipeline
class MyFilesPipeline (FilesPipeline):

def file_path(self, request, response=None, info=None) :
return 'files/' + os.path.basename (urlparse (request.url) .path)

190 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

By default the file path () method returns full/<request URL hash>.<extension>.

get_media_requests (item, info)
As seen on the workflow, the pipeline will get the URLSs of the images to download from the item. In order
to do this, you can override the get_media_requests () method and return a Request for each file
URL:

from itemadapter import ItemAdapter

def get_media_requests(self, item, info):
adapter = ItemAdapter (item)
for file_url in adapter['file urls']:
yield scrapy.Request (file_url)

Those requests will be processed by the pipeline and, when they have finished downloading, the results
will be sent to the item completed () method, as a list of 2-element tuples. Each tuple will contain
(success, file_info_or_error) where:

= success is a boolean which is True if the image was downloaded successfully or False if it failed
for some reason

= file_info_or_error isadict containing the following keys (if success is True) oraFailure
if there was a problem.

e url - the url where the file was downloaded from. This is the url of the request returned from the
get_media_requests () method.

* path - the path (relative to FTLES STORE) where the file was stored
* checksum - a MD5 hash of the image contents
* status - the file status indication.

New in version 2.2.

It can be one of the following:

o downloaded - file was downloaded.

o uptodate - file was not downloaded, as it was downloaded recently, according to the file
expiration policy.

o cached - file was already scheduled for download, by another item sharing the same file.

The list of tuples received by i tem completed () is guaranteed to retain the same order of the requests
returned from the get__media_requests () method.

Here’s a typical value of the results argument:

[(True,
{'checksum': '2b00042f7481c7b056c4b410d28f33cf",
'path': '"full/0a79c461a4062ac383dc4fade7bc09£1384a3910. jpg",
'url': 'http://www.example.com/files/productl.pdf',
'status': 'downloaded'}),
(False,
Failure(...))]

By defaultthe get_media requests () method returns None which means there are no files to down-
load for the item.

item_completed (results, item, info)
The FilesPipeline.item completed () method called when all file requests for a single item
have completed (either finished downloading, or failed for some reason).

5.9.

Downloading and processing files and images 191

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html
https://en.wikipedia.org/wiki/MD5

Scrapy Documentation, Release 2.2.0

The item completed () method must return the output that will be sent to subsequent item pipeline
stages, so you must return (or drop) the item, as you would in any pipeline.

Here is an example of the i tem completed () method where we store the downloaded file paths (pas-
sed in results) in the file_paths item field, and we drop the item if it doesn’t contain any files:

from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
file_paths = [x['path'] for ok, x in results if ok]
if not file_paths:
raise Dropltem("Item contains no files")
adapter = ItemAdapter (item)
adapter['file paths'] = file_paths
return item

By default, the i tem completed () method returns the item.
See here the methods that you can override in your custom Images Pipeline:
class scrapy.pipelines.images.ImagesPipeline

The ImagesPipelineis anextension of the FilesPipeline, customizing the field names and
adding custom behavior for images.

file_ path (self, request, response=None, info=None)
This method is called once per downloaded item. It returns the download path of the file originating from
the specified response.

In addition to response, this method receives the original request and info.
You can override this method to customize the download path of each file.

For example, if file URLs end like regular paths (e.g. https://example.com/a/b/c/foo.png),
you can use the following approach to download all files into the £iles folder with their original filena-
mes (e.g. files/foo.png):

import os
from urllib.parse import urlparse

from scrapy.pipelines.images import ImagesPipeline
class MyImagesPipeline (ImagesPipeline):

def file_path(self, request, response=None, info=None):
return 'files/' + os.path.basename (urlparse (request.url) .path)

By default the file path () method returns full/<request URL hash>.<extension>.

get_media_requests (item, info)
Works the same way as FilesPipeline.get_media_requests () method, but using a different
field name for image urls.

Must return a Request for each image URL.

item_completed (results, item, info)
The ImagesPipeline.item _completed () method is called when all image requests for a single
item have completed (either finished downloading, or failed for some reason).

Works the same way as FilesPipeline.item_completed () method, but using a different field
names for storing image downloading results.

192 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

By default, the i tem completed () method returns the item.

5.9.8 Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are exemplified above:

import scrapy

from itemadapter import ItemAdapter

from scrapy.exceptions import DropItem

from scrapy.pipelines.images import ImagesPipeline

class MyImagesPipeline (ImagesPipeline):

def get_media_requests(self, item, info):
for image_url in item['image_urls']:
yield scrapy.Request (image_url)

def item_completed(self, results, item, info):
image_paths [x['path'] for ok, x in results if ok]
if not image_paths:
raise Dropltem("Item contains no images")
adapter = ItemAdapter (item)
adapter['image_paths'] = image_paths
return item

To enable your custom media pipeline component you must add its class import path to the TTEM PIPELINES
setting, like in the following example:

ITEM_PIPELINES = {
'myproject.pipelines.MyImagesPipeline': 300

5.10 Deploying Spiders

This section describes the different options you have for deploying your Scrapy spiders to run them on a regular basis.
Running Scrapy spiders in your local machine is very convenient for the (early) development stage, but not so much
when you need to execute long-running spiders or move spiders to run in production continuously. This is where the
solutions for deploying Scrapy spiders come in.

Popular choices for deploying Scrapy spiders are:
= Scrapyd (open source)

» Scrapy Cloud (cloud-based)

5.10. Deploying Spiders 193

Scrapy Documentation, Release 2.2.0

5.10.1 Deploying to a Scrapyd Server
Scrapyd is an open source application to run Scrapy spiders. It provides a server with HTTP API, capable of running
and monitoring Scrapy spiders.

To deploy spiders to Scrapyd, you can use the scrapyd-deploy tool provided by the scrapyd-client package. Please
refer to the scrapyd-deploy documentation for more information.

Scrapyd is maintained by some of the Scrapy developers.

5.10.2 Deploying to Scrapy Cloud

Scrapy Cloud is a hosted, cloud-based service by Scrapinghub, the company behind Scrapy.

Scrapy Cloud removes the need to setup and monitor servers and provides a nice Ul to manage spiders and review
scraped items, logs and stats.

To deploy spiders to Scrapy Cloud you can use the shub command line tool. Please refer to the Scrapy Cloud docu-
mentation for more information.

Scrapy Cloud is compatible with Scrapyd and one can switch between them as needed - the configuration is read from
the scrapy.cfgq file just like scrapyd-deploy.

5.11 AutoThrottle extension

This is an extension for automatically throttling crawling speed based on load of both the Scrapy server and the website
you are crawling.

5.11.1 Design goals

1. be nicer to sites instead of using default download delay of zero

2. automatically adjust Scrapy to the optimum crawling speed, so the user doesn’t have to tune the download delays
to find the optimum one. The user only needs to specify the maximum concurrent requests it allows, and the
extension does the rest.

5.11.2 How it works

AutoThrottle extension adjusts download delays dynamically to make spider send
AUTOTHROTTLE_TARGET CONCURRENCY concurrent requests on average to each remote website.

It uses download latency to compute the delays. The main idea is the following: if a server needs latency seconds
to respond, a client should send a request each 1atency/N seconds to have N requests processed in parallel.

Instead of adjusting the delays one can just set a small fixed download delay and impose hard limits on concurrency
using CONCURRENT _REQUESTS_PER_DOMAIN or CONCURRENT REQUESTS_PER_IP options. It will provide
a similar effect, but there are some important differences:

= because the download delay is small there will be occasional bursts of requests;

= often non-200 (error) responses can be returned faster than regular responses, so with a small download delay
and a hard concurrency limit crawler will be sending requests to server faster when server starts to return errors.
But this is an opposite of what crawler should do - in case of errors it makes more sense to slow down: these
errors may be caused by the high request rate.

194 Capitulo 5. Solving specific problems

https://github.com/scrapy/scrapyd
https://github.com/scrapy/scrapyd-client
https://scrapyd.readthedocs.io/en/latest/deploy.html
https://scrapinghub.com/scrapy-cloud
https://scrapinghub.com/
https://doc.scrapinghub.com/shub.html
https://doc.scrapinghub.com/scrapy-cloud.html
https://doc.scrapinghub.com/scrapy-cloud.html

Scrapy Documentation, Release 2.2.0

AutoThrottle doesn’t have these issues.

5.11.3 Throttling algorithm

AutoThrottle algorithm adjusts download delays based on the following rules:
1. spiders always start with a download delay of AUTOTHROTTLE _START_DELAY;

2. when a response is received, the target download delay is calculated as latency / N where latency isa
latency of the response, and N is AUTOTHROTTLE_TARGET_CONCURRENCY.

3. download delay for next requests is set to the average of previous download delay and the target download delay;
4. latencies of non-200 responses are not allowed to decrease the delay;

5. download delay can’t become less than DOWNLOAD DELAY or greater than AUTOTHROTTLE_MAX_DELAY

Note: The AutoThrottle extension honours the standard Scrapy settings for concurrency and delay. This means that
it will respect CONCURRENT _REQUESTS_PER _DOMAIN and CONCURRENT REQUESTS_PER_IP options and
never set a download delay lower than DOWNLOAD DELAY.

In Scrapy, the download latency is measured as the time elapsed between establishing the TCP connection and recei-
ving the HTTP headers.

Note that these latencies are very hard to measure accurately in a cooperative multitasking environment because Scrapy
may be busy processing a spider callback, for example, and unable to attend downloads. However, these latencies
should still give a reasonable estimate of how busy Scrapy (and ultimately, the server) is, and this extension builds on
that premise.

5.11.4 Settings

The settings used to control the AutoThrottle extension are:
m AUTOTHROTTLE_ENABLED
s AUTOTHROTTLE_ _START DELAY
s AUTOTHROTTLE _MAX DELAY
s AUTOTHROTTLE TARGET CONCURRENCY
s AUTOTHROTTLE_DEBUG
s CONCURRENT_REQUESTS_PER_DOMAIN
s CONCURRENT_REQUESTS_PER_IP
»s DOWNLOAD_DELAY

For more information see How it works.

5.11. AutoThrottle extension 195

Scrapy Documentation, Release 2.2.0

AUTOTHROTTLE_ENABLED

Default: False

Enables the AutoThrottle extension.

AUTOTHROTTLE_START_DELAY

Default: 5.0

The initial download delay (in seconds).

AUTOTHROTTLE_MAX_DELAY

Default: 60.0

The maximum download delay (in seconds) to be set in case of high latencies.

AUTOTHROTTLE_TARGET_CONCURRENCY

New in version 1.1.
Default: 1.0
Average number of requests Scrapy should be sending in parallel to remote websites.

By default, AutoThrottle adjusts the delay to send a single concurrent request to each of the remote websites.
Set this option to a higher value (e.g. 2.0) to increase the throughput and the load on remote servers. A lower
AUTOTHROTTLE_TARGET_CONCURRENCY value (e.g. 0. 5) makes the crawler more conservative and polite.

Note that CONCURRENT _REQUESTS _PER_DOMAIN and CONCURRENT REQUESTS PER_IP Options are still
respected when AutoThrottle extension is enabled. This means that if AUTOTHROTTLE_TARGET_CONCURRENCY
is set to a value higher than CONCURRENT _REQUESTS_PER_DOMAIN or CONCURRENT _REQUESTS_PER_IP,
the crawler won’t reach this number of concurrent requests.

At every given time point Scrapy can be sending more or less concurrent requests than
AUTOTHROTTLE_TARGET_CONCURRENCY; it is a suggested value the crawler tries to approach, not a hard
limit.

AUTOTHROTTLE_DEBUG

Default: False

Enable AutoThrottle debug mode which will display stats on every response received, so you can see how the throttling
parameters are being adjusted in real time.

196 Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

5.12 Benchmarking

New in version 0.17.

Scrapy comes with a simple benchmarking suite that spawns a local HTTP server and crawls it at the maximum
possible speed. The goal of this benchmarking is to get an idea of how Scrapy performs in your hardware, in order to
have a common baseline for comparisons. It uses a simple spider that does nothing and just follows links.

To run it use:

scrapy bench

You should see an output like this:

2016-12-16 21:18:48 [scrapy.utils.log] INFO: Scrapy 1.2.2 started (bot: quotesbot)

2016-12-16 21:18:48 [scrapy.utils.log] INFO: Overridden settings: {'CLOSESPIDER_
—TIMEOUT': 10, 'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['quotesbot.spiders'],

— "'LOGSTATS_INTERVAL': 1, 'BOT_NAME': 'quotesbot', 'LOG_LEVEL': 'INFO', 'NEWSPIDER__
—MODULE': 'quotesbot.spiders'}

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled extensions:
['"scrapy.extensions.closespider.CloseSpider',
'scrapy.extensions.logstats.LogStats',
'scrapy.extensions.telnet.TelnetConsole',
'scrapy.extensions.corestats.CoreStats']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled downloader middlewares:
['"scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
'scrapy.downloadermiddlewares.downloadtimeout .DownloadTimeoutMiddleware',
'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
'scrapy.downloadermiddlewares.useragent .UserAgentMiddleware',
'scrapy.downloadermiddlewares.retry.RetryMiddleware',
'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
'scrapy.downloadermiddlewares.stats.DownloaderStats']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled spider middlewares:
["scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware’,
'scrapy.spidermiddlewares.referer.RefererMiddleware',
'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
'scrapy.spidermiddlewares.depth.DepthMiddleware']

2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled item pipelines:

[]

2016-12-16 21:18:49 [scrapy.core.engine] INFO: Spider opened

2016-12-16 21:18:49 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/
—min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:50 [scrapy.extensions.logstats] INFO: Crawled 70 pages (at 4200
—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:51 [scrapy.extensions.logstats] INFO: Crawled 134 pages (at 3840
—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:52 [scrapy.extensions.logstats] INFO: Crawled 198 pages (at 3840
—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:53 [scrapy.extensions.logstats] INFO: Crawled 254 pages (at 3360,
—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:54 [scrapy.extensions.logstats] INFO: Crawled 302 pages (at 2880,
—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:18:55 [scrapy.extensions.logstats] INFO: Crawled 358 pages (at 3360

—pages/min), scraped 0 items (at 0 items/min) (continues on next page)

5.12. Benchmarking 197

Scrapy Documentation, Release 2.2.0

(continued from previous page)

2016-12-16 21:18:56 [scrapy.extensions.logstats] INFO: Crawled 406 pages (at 2880
—pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:57 [scrapy.extensions.logstats] INFO: Crawled 438 pages (at 1920,
—pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:58 [scrapy.extensions.logstats] INFO: Crawled 470 pages (at 1920
—pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:59 [scrapy.core.engine] INFO: Closing spider (closespider_timeout)
2016-12-16 21:18:59 [scrapy.extensions.logstats] INFO: Crawled 518 pages (at 2880

—pages/min), scraped 0 items (at 0 items/min)

2016-12-16 21:19:00 [scrapy.statscollectors]

{'downloader/request_bytes': 229995,
'downloader/request_count': 534,

'downloader/request_method_count/GET': 534,
'downloader/response_bytes': 1565504,
'downloader/response_count': 534,
'downloader/response_status_count/200': 534,

'finish_reason': 'closespider_timeout',
'"finish_time': datetime.datetime (2016,
'log_count/INFO': 17,
'request_depth_max': 19,
'response_received_count':
533,
'scheduler/dequeued/memory"':
10661,
'scheduler/enqueued/memory': 10661,
'start_time': datetime.datetime (2016,
2016-12-16 21:19:00 [scrapy.core.engine]

12,

534,
'scheduler/dequeued’ :
533,
'scheduler/enqueued’:

12, 1e,
INFO:

le,

INFO: Dumping Scrapy stats:

16, 19, 0, 647725),

16, 18, 49, 799869)}
Spider closed (closespider_timeout)

That tells you that Scrapy is able to crawl about 3000 pages per minute in the hardware where you run it. Note that
this is a very simple spider intended to follow links, any custom spider you write will probably do more stuff which
results in slower crawl rates. How slower depends on how much your spider does and how well it’s written.

In the future, more cases will be added to the benchmarking suite to cover other common scenarios.

5.13 Jobs: pausing and resuming crawls

Sometimes, for big sites, it’s desirable to pause crawls and be able to resume them later.

Scrapy supports this functionality out of the box by providing the following facilities:

= a scheduler that persists scheduled requests on disk

= a duplicates filter that persists visited requests on disk

= an extension that keeps some spider state (key/value pairs) persistent between batches

198

Capitulo 5. Solving specific problems

Scrapy Documentation, Release 2.2.0

5.13.1 Job directory
To enable persistence support you just need to define a job directory through the JOBDIR setting. This directory will
be for storing all required data to keep the state of a single job (i.e. a spider run). It’s important to note that this

directory must not be shared by different spiders, or even different jobs/runs of the same spider, as it’s meant to be
used for storing the state of a single job.

5.13.2 How to use it

To start a spider with persistence support enabled, run it like this:

’scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Then, you can stop the spider safely at any time (by pressing Ctrl-C or sending a signal), and resume it later by issuing
the same command:

’scrapy crawl somespider -s JOBDIR=crawls/somespider-1

5.13.3 Keeping persistent state between batches

Sometimes you’ll want to keep some persistent spider state between pause/resume batches. You can use the spider.
state attribute for that, which should be a dict. There’s a built-in extension that takes care of serializing, storing and
loading that attribute from the job directory, when the spider starts and stops.

Here’s an example of a callback that uses the spider state (other spider code is omitted for brevity):

def parse_item(self, response):
parse item here
self.state['items_count'] = self.state.get('items_count', 0) + 1

5.13.4 Persistence gotchas

There are a few things to keep in mind if you want to be able to use the Scrapy persistence support:

Cookies expiration

Cookies may expire. So, if you don’t resume your spider quickly the requests scheduled may no longer work. This
won’t be an issue if you spider doesn’t rely on cookies.

Request serialization
For persistence to work, Request objects must be serializable with pickle, except for the callback and
errback values passed to their __init___ method, which must be methods of the running Spider class.

If you wish to log the requests that couldn’t be serialized, you can set the SCHEDULER _DEBUG setting to True in
the project’s settings page. It is False by default.

5.13. Jobs: pausing and resuming crawls 199

https://docs.python.org/3/library/pickle.html#module-pickle

Scrapy Documentation, Release 2.2.0

5.14 Coroutines

New in version 2.0.

Scrapy has partial support for the coroutine syntax.

5.14.1 Supported callables

The following callables may be defined as coroutines using async def, and hence use coroutine syntax (e.g. await,

async for,async with):

= Request callbacks.

The following are known caveats of the current implementation that we aim to address in future versions of

Scrapy:

* The callback output is not processed until the whole callback finishes.

As a side effect, if the callback raises an exception, none of its output is processed.

* Because asynchronous generators were introduced in Python 3.6, you can only use yield if you are using

Python 3.6 or later.

If you need to output multiple items or requests and you are using Python 3.5, return an iterable (e.g. a list)

instead.

» The process_item () method of item pipelines.

» The process_request (), process_response (), and process_exception () methods of down-

loader middlewares.

» Signal handlers that support deferreds.

5.14.2 Usage

There are several use cases for coroutines in Scrapy. Code that would return Deferreds when written for previous
Scrapy versions, such as downloader middlewares and signal handlers, can be rewritten to be shorter and cleaner:

from itemadapter import ItemAdapter

class DbPipeline:
def _update_item(self, data, item):
adapter = ItemAdapter (item)
adapter['field'] = data
return item

def process_item(self, item, spider):

adapter = ItemAdapter (item)

dfd = db.get_some_data (adapter['id'])
dfd.addCallback (self._update_item,

return dfd

becomes:

from itemadapter import ItemAdapter

class DbPipeline:

async def process_item(self, item, spider):

(continues on next page)

200

Capitulo 5. Solving specific problems

https://docs.python.org/3/reference/compound_stmts.html#async
https://www.python.org/dev/peps/pep-0525/

Scrapy Documentation, Release 2.2.0

(continued from previous page)

adapter = ItemAdapter (item)
adapter['field'] = await db.get_some_data (adapter['id'])
return item

Coroutines may be used to call asynchronous code. This includes other coroutines, functions that return Deferreds
and functions that return awaitable objects such as Future. This means you can use many useful Python libraries
providing such code:

class MySpider (Spider) :
#
async def parse_with_deferred(self, response):
additional_response = await treq.get ('https://additional.url')
additional_data = await treqg.content (additional_response)
... use response and additional_data to yield items and requests

async def parse_with_asyncio(self, response):
async with aiohttp.ClientSession() as session:

async with session.get ('https://additional.url') as additional_response:
additional_data = await r.text ()
... use response and additional_data to yield items and requests

Note: Many libraries that use coroutines, such as aio-libs, require the asyncio loop and to use them you need to
enable asyncio support in Scrapy.

Common use cases for asynchronous code include:
= requesting data from websites, databases and other services (in callbacks, pipelines and middlewares);
= storing data in databases (in pipelines and middlewares);
= delaying the spider initialization until some external event (in the spider._opened handler);

= calling asynchronous Scrapy methods like ExecutionEngine.download (see the screenshot pipeline
example).

5.15 asyncio

New in version 2.0.

Scrapy has partial support asyncio. After you install the asyncio reactor, you may use asyncio and asyncio-
powered libraries in any coroutine.

Warning: asyncio support in Scrapy is experimental. Future Scrapy versions may introduce related changes
without a deprecation period or warning.

5.15. asyncio 201

https://docs.python.org/3/glossary.html#term-awaitable
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://github.com/aio-libs
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Scrapy Documentation, Release 2.2.0

5.15.1 Installing the asyncio reactor
To enable asyncio support, set the TWISTED REACTOR setting to 'twisted.internet.
asyncioreactor.AsyncioSelectorReactor’'.

If you are using CrawlerRunner, you also need to install the AsyncioSelectorReactor reactor manually.
You can do that using install_reactor():

install_reactor('twisted.internet.asyncioreactor.AsyncioSelectorReactor"')

Frequently Asked Questions Get answers to most frequently asked questions.

Debugging Spiders Learn how to debug common problems of your Scrapy spider.

Spiders Contracts Learn how to use contracts for testing your spiders.

Common Practices Get familiar with some Scrapy common practices.

Broad Crawls Tune Scrapy for crawling a lot domains in parallel.

Using your browser’s Developer Tools for scraping Learn how to scrape with your browser’s developer tools.
Selecting dynamically-loaded content Read webpage data that is loaded dynamically.

Debugging memory leaks Learn how to find and get rid of memory leaks in your crawler.

Downloading and processing files and images Download files and/or images associated with your scraped items.
Deploying Spiders Deploying your Scrapy spiders and run them in a remote server.

AutoThrottle extension Adjust crawl rate dynamically based on load.

Benchmarking Check how Scrapy performs on your hardware.

Jobs: pausing and resuming crawls Learn how to pause and resume crawls for large spiders.

Coroutines Use the coroutine syntax.

asyncio Use asyncio and asyncio-powered libraries.

202 Capitulo 5. Solving specific problems

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://twistedmatrix.com/documents/current/api/twisted.internet.asyncioreactor.AsyncioSelectorReactor.html
https://docs.python.org/3/reference/compound_stmts.html#async
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

CAPITULO O

Extending Scrapy

6.1 Architecture overview

This document describes the architecture of Scrapy and how its components interact.

6.1.1 Overview

The following diagram shows an overview of the Scrapy architecture with its components and an outline of the data
flow that takes place inside the system (shown by the red arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is also described below.

203

Scrapy Documentation, Release 2.2.0

6.1.2 Data flow

The data flow in Scrapy is controlled by the execution engine, and goes like this:

1.

BB oo

SPIDERS

[ITEMS/REQUESTS [REQUESTS |

ITEM PIPELINES ENGINE

REQUESTS

A C

4

The Engine gets the initial Requests to crawl from the Spider.

The Scheduler returns the next Requests to the Engine.

process_request ()).

INTERNET
1
1
1
1
:
1
v
RESPONSE Ji=3
[] []
REQUESTS

2. The Engine schedules the Requests in the Scheduler and asks for the next Requests to crawl.
3.
4

. The Engine sends the Requests to the Downloader, passing through the Downloader Middlewares (see

Once the page finishes downloading the Downloader generates a Response (with that page) and sends it to the
Engine, passing through the Downloader Middlewares (see process_response ()).

The Engine receives the Response from the Downloader and sends it to the Spider for processing, passing
through the Spider Middleware (see process_spider_input ()).

The Spider processes the Response and returns scraped items and new Requests (to follow) to the Engine,
passing through the Spider Middleware (see process_spider._output ()).

The Engine sends processed items to Item Pipelines, then send processed Requests to the Scheduler and asks

for possible next Requests to crawl.

The process repeats (from step 1) until there are no more requests from the Scheduler.

204

Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

6.1.3 Components
Scrapy Engine

The engine is responsible for controlling the data flow between all components of the system, and triggering events
when certain actions occur. See the Data Flow section above for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding them later (also to the engine) when
the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the engine which, in turn, feeds them to
the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and extract ifems from them or additional
requests to follow. For more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been extracted (or scraped) by the spiders.
Typical tasks include cleansing, validation and persistence (like storing the item in a database). For more information
see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the Downloader and process requests
when they pass from the Engine to the Downloader, and responses that pass from Downloader to the Engine.

Use a Downloader middleware if you need to do one of the following:

= process a request just before it is sent to the Downloader (i.e. right before Scrapy sends the request to the
website);

= change received response before passing it to a spider;

= send a new Request instead of passing received response to a spider;
= pass response to a spider without fetching a web page;

= silently drop some requests.

For more information see Downloader Middleware.

6.1. Architecture overview 205

Scrapy Documentation, Release 2.2.0

Spider middlewares
Spider middlewares are specific hooks that sit between the Engine and the Spiders and are able to process spider input
(responses) and output (items and requests).
Use a Spider middleware if you need to
= post-process output of spider callbacks - change/add/remove requests or items;
= post-process start_requests;
= handle spider exceptions;
= call errback instead of callback for some of the requests based on response content.

For more information see Spider Middleware.

6.1.4 Event-driven networking
Scrapy is written with Twisted, a popular event-driven networking framework for Python. Thus, it’s implemented using
a non-blocking (aka asynchronous) code for concurrency.
For more information about asynchronous programming and Twisted see these links:
» Introduction to Deferreds
» Twisted - hello, asynchronous programming

» Twisted Introduction - Krondo

6.2 Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s request/response processing. It’s a light, low-level
system for globally altering Scrapy’s requests and responses.

6.2.1 Activating a downloader middleware

To activate a downloader middleware component, add it to the DOWNLOADER_MIDDLEWARES setting, which is a
dict whose keys are the middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,

}

The DOWNLOADER _MIDDLEWARES setting is merged with the DOWNLOADER MIDDLEWARES_ BASE setting de-
fined in Scrapy (and not meant to be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last is the one closer to the downloader. In
other words, the process_request () method of each middleware will be invoked in increasing middleware or-
der (100, 200, 300, ...) and the process_response () method of each middleware will be invoked in decreasing
order.

To decide which order to assign to your middleware see the DOWNLOADER MIDDLEWARES BASE setting and pick a
value according to where you want to insert the middleware. The order does matter because each middleware performs
a different action and your middleware could depend on some previous (or subsequent) middleware being applied.

206 Capitulo 6. Extending Scrapy

https://twistedmatrix.com/trac/
https://twistedmatrix.com/documents/current/core/howto/defer-intro.html
http://jessenoller.com/blog/2009/02/11/twisted-hello-asynchronous-programming/
http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/

Scrapy Documentation, Release 2.2.0

If you want to disable a built-in middleware (the ones defined in DOWNLOADER MIDDLEWARES_BASE and enabled
by default) you must define it in your project’s DOWNLOADER_MIDDLEWARES setting and assign None as its value.
For example, if you want to disable the user-agent middleware:

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.CustomDownloaderMiddleware': 543,
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.2.2 Writing your own downloader middleware

Each downloader middleware is a Python class that defines one or more of the methods defined below.

The main entry point is the from_crawler class method, which receives a Crawler instance. The Crawler
object gives you access, for example, to the sertings.

class scrapy.downloadermiddlewares.DownloaderMiddleware

Note: Any of the downloader middleware methods may also return a deferred.

process_request (request, spider)
This method is called for each request that goes through the download middleware.

process_request () should either: return None, return a Response object, return a Request
object, or raise TgnoreRequest.

If it returns None, Scrapy will continue processing this request, executing all other middlewares until,
finally, the appropriate downloader handler is called the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother calling any other process_request () or
process_exception () methods, or the appropriate download function; it’ll return that response. The
process_response () methods of installed middleware is always called on every response.

If it returns a Request object, Scrapy will stop calling process_request methods and reschedule the
returned request. Once the newly returned request is performed, the appropriate middleware chain will be
called on the downloaded response.

If it raises an TgnoreRequest exception, the process_exception () methods of installed down-
loader middleware will be called. If none of them handle the exception, the errback function of the request
(Request .errback) is called. If no code handles the raised exception, it is ignored and not logged
(unlike other exceptions).

Parameters
= request (Request object) — the request being processed
= spider (Spider object) — the spider for which this request is intended

process_response (request, response, spider)
process_response () should either: return a Response object, return a Request object or raise a
IgnoreRequest exception.

If it returns a Response (it could be the same given response, or a brand-new one), that response will
continue to be processed with the process_response () of the next middleware in the chain.

6.2. Downloader Middleware 207

Scrapy Documentation, Release 2.2.0

If it returns a Request object, the middleware chain is halted and the returned request is resche-
duled to be downloaded in the future. This is the same behavior as if a request is returned from
process_request ().

If it raises an TgnoreRequest exception, the errback function of the request (Request . errback)is
called. If no code handles the raised exception, it is ignored and not logged (unlike other exceptions).

Parameters
» request (is a Request object) — the request that originated the response
= response (Response object) — the response being processed
» spider (Spider object) — the spider for which this response is intended

process_exception (request, exception, spider)
Scrapy calls process_exception () when a download handler or a process_request () (froma
downloader middleware) raises an exception (including an TgnoreRequest exception)

process_exception () should return: either None, a Response object, or a Request object.

If it returns None, Scrapy will continue processing this exception, executing any other
process_exception () methods of installed middleware, until no middleware is left and the default
exception handling kicks in.

If it returns a Response object, the process_response () method chain of installed middleware is
started, and Scrapy won’t bother calling any other process_exception () methods of middleware.

If it returns a Request object, the returned request is rescheduled to be downloaded in the future. This
stops the execution of process_exception () methods of the middleware the same as returning a
response would.

Parameters
» request (is a Request object) — the request that generated the exception
= exception (an Exception object) — the raised exception
= spider (Spider object) — the spider for which this request is intended

from crawler (cls, crawler)
If present, this classmethod is called to create a middleware instance from a Crawler. It must return a
new instance of the middleware. Crawler object provides access to all Scrapy core components like settings
and signals; it is a way for middleware to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) — crawler that uses this middleware

6.2.3 Built-in downloader middleware reference

This page describes all downloader middleware components that come with Scrapy. For information on how to use
them and how to write your own downloader middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the DOWNLOADER_MIDDLEWARES_BASE
setting.

208 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

CookiesMiddleware

class scrapy.downloadermiddlewares.cookies.CookiesMiddleware
This middleware enables working with sites that require cookies, such as those that use sessions. It keeps track
of cookies sent by web servers, and sends them back on subsequent requests (from that spider), just like web
browsers do.

Caution: When non-UTFS8 encoded byte sequences are passed to a Request, the CookiesMiddleware
will log a warning. Refer to Advanced customization to customize the logging behaviour.

The following settings can be used to configure the cookie middleware:
s COOKIES_ ENABLED

s COOKIES_DEBUG

Multiple cookie sessions per spider

New in version 0.15.

There is support for keeping multiple cookie sessions per spider by using the cookie jar Request meta key. By
default it uses a single cookie jar (session), but you can pass an identifier to use different ones.

For example:

for i, url in enumerate (urls):
yield scrapy.Request (url, meta={'cookiejar': i},
callback=self.parse_page)

Keep in mind that the cook ie jar metakey is not «sticky». You need to keep passing it along on subsequent requests.
For example:

def parse_page(self, response):
do some processing
return scrapy.Request ("http://www.example.com/otherpage",
meta={"'cookiejar': response.metal'cookiejar']l},
callback=self.parse_other_page)

COOKIES_ENABLED

Default: True
Whether to enable the cookies middleware. If disabled, no cookies will be sent to web servers.

Notice that despite the value of COOKIES ENABLED setting if Request .meta ['dont_merge cookies']
evaluates to True the request cookies will not be sent to the web server and received cookies in Response will not
be merged with the existing cookies.

For more detailed information see the cookies parameter in Request.

6.2. Downloader Middleware 209

Scrapy Documentation, Release 2.2.0

COOKIES_DEBUG

Default: False

If enabled, Scrapy will log all cookies sent in requests (i.e. Cookie header) and all cookies received in responses (i.e.
Set—-Cookie header).

Here’s an example of a log with COOKIES DEBUG enabled:

2011-04-06 14:35:10-0300 [scrapy.core.engine] INFO: Spider opened
2011-04-06 14:35:10-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Sending,
—scookies to: <GET http://www.diningcity.com/netherlands/index.html>
Cookie: clientlanguage_nl=en_EN
2011-04-06 14:35:14-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Received,
—cookies from: <200 http://www.diningcity.com/netherlands/index.html>
Set-Cookie: JSESSIONID=B~FA4DC0C496C8762AE4AF1A620EAB34F38; Path=/
Set-Cookie: ip_isocode=US
Set-Cookie: clientlanguage_nl=en_EN; Expires=Thu, 07-Apr-2011 21:21:34 GMT;
—Path=/
2011-04-06 14:49:50-0300 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://www.
—diningcity.com/netherlands/index.html> (referer: None)

[...]

DefaultHeadersMiddleware

class scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware
This middleware sets all default requests headers specified in the DEFAULT REQUEST_HEADERS setting.

DownloadTimeoutMiddleware

class scrapy.downloadermiddlewares.downloadtimeout .DownloadTimeoutMiddleware
This middleware sets the download timeout for requests specified in the DOWNLOAD_TIMEOUT setting or
download_timeout spider attribute.

Note: You can also set download timeout per-request using download_timeout Request.meta key; this is suppor-
ted even when DownloadTimeoutMiddleware is disabled.

HttpAuthMiddleware

class scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware
This middleware authenticates all requests generated from certain spiders using Basic access authentication
(aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user and http_pass attributes of those
spiders.

Example:

from scrapy.spiders import CrawlSpider

class SomeIntranetSiteSpider (CrawlSpider):

http_user = 'someuser'

(continues on next page)

210 Capitulo 6. Extending Scrapy

https://en.wikipedia.org/wiki/Basic_access_authentication

Scrapy Documentation, Release 2.2.0

(continued from previous page)

http_pass = 'somepass'
name = 'intranet.example.com'
.. rest of the spider code omitted ...

HttpCacheMiddleware

class scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware
This middleware provides low-level cache to all HTTP requests and responses. It has to be combined with a
cache storage backend as well as a cache policy.

Scrapy ships with three HTTP cache storage backends:
n Filesystem storage backend (default)
» DBM storage backend

You can change the HTTP cache storage backend with the HTTPCACHE _STORAGE setting. Or you can also
implement your own storage backend.

Scrapy ships with two HTTP cache policies:
= RFC2616 policy
» Dummy policy (default)

You can change the HTTP cache policy with the HTTPCACHE_POLICY setting. Or you can also implement
your own policy. You can also avoid caching a response on every policy using dont_ cache meta key equals
True.

Dummy policy (default)

class scrapy.extensions.httpcache.DummyPolicy
This policy has no awareness of any HTTP Cache-Control directives. Every request and its corresponding res-
ponse are cached. When the same request is seen again, the response is returned without transferring anything
from the Internet.

The Dummy policy is useful for testing spiders faster (without having to wait for downloads every time) and
for trying your spider offline, when an Internet connection is not available. The goal is to be able to «replay» a
spider run exactly as it ran before.

RFC2616 policy

class scrapy.extensions.httpcache.RFC2616Policy
This policy provides a RFC2616 compliant HTTP cache, i.e. with HTTP Cache-Control awareness, aimed at
production and used in continuous runs to avoid downloading unmodified data (to save bandwidth and speed up
crawls).

What is implemented:
= Do not attempt to store responses/requests with no—store cache-control directive set
= Do not serve responses from cache if no—cache cache-control directive is set even for fresh responses
= Compute freshness lifetime from max—-age cache-control directive

= Compute freshness lifetime from Expires response header

6.2. Downloader Middleware 211

Scrapy Documentation, Release 2.2.0

= Compute freshness lifetime from Last-Modi fied response header (heuristic used by Firefox)
= Compute current age from Age response header

= Compute current age from Date header

= Revalidate stale responses based on Last-Modi fied response header

= Revalidate stale responses based on ETag response header

= Set Date header for any received response missing it

= Support max-stale cache-control directive in requests

This allows spiders to be configured with the full RFC2616 cache policy, but avoid revalidation on a request-by-
request basis, while remaining conformant with the HTTP spec.

Example:

Add Cache-Control: max-stale=600 to Request headers to accept responses that have exceeded their
expiration time by no more than 600 seconds.

See also: RFC2616, 14.9.3

What is missing:
» Pragma: no-cache support https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1
= Vary header support https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6

= Invalidation after updates or deletes https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

= probably others ..

Filesystem storage backend (default)

class scrapy.extensions.httpcache.FilesystemCacheStorage
File system storage backend is available for the HTTP cache middleware.

Each request/response pair is stored in a different directory containing the following files:
= request_body - the plain request body
= request_headers - the request headers (in raw HTTP format)
= response_body - the plain response body
= response_headers - the request headers (in raw HTTP format)
= meta - some metadata of this cache resource in Python repr () format (grep-friendly format)
= pickled_meta - the same metadata in meta but pickled for more efficient deserialization

The directory name is made from the request fingerprint (see scrapy.utils.request.fingerprint),
and one level of subdirectories is used to avoid creating too many files into the same directory (which is ineffi-
cient in many file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0adad6c’

212 Capitulo 6. Extending Scrapy

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

Scrapy Documentation, Release 2.2.0

DBM storage backend

class scrapy.extensions.httpcache.DbmCacheStorage
New in version 0.13.

A DBM storage backend is also available for the HTTP cache middleware.

By default, it uses the dbm, but you can change it with the H”TTPCACHE_DBM MODULE setting.

Writing your own storage backend

You can implement a cache storage backend by creating a Python class that defines the methods described below.

class scrapy.extensions.httpcache.CacheStorage

open_spider (spider)
This method gets called after a spider has been opened for crawling. It handles the open_spider signal.

Parameters spider (Spider object) — the spider which has been opened

close_spider (spider)
This method gets called after a spider has been closed. It handles the c1ose_spider signal.

Parameters spider (Spider object) — the spider which has been closed

retrieve_response (spider, request)
Return response if present in cache, or None otherwise.

Parameters
= spider (Spider object) — the spider which generated the request
= request (Request object) — the request to find cached response for

store_response (spider, request, response)
Store the given response in the cache.

Parameters
= spider (Spider object) — the spider for which the response is intended
= request (Request object) — the corresponding request the spider generated
= response (Response object) — the response to store in the cache
In order to use your storage backend, set:

» ATTPCACHE_STORAGE to the Python import path of your custom storage class.

HTTPCache middleware settings

The Ht tpCacheMiddleware can be configured through the following settings:

6.2. Downloader Middleware 213

https://en.wikipedia.org/wiki/Dbm
https://docs.python.org/3/library/dbm.html#module-dbm

Scrapy Documentation, Release 2.2.0

HTTPCACHE_ENABLED

New in version 0.11.
Default: False
Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, HTTPCACHE_DIR was used to enable cache.

HTTPCACHE_EXPIRATION_SECS

Default: 0
Expiration time for cached requests, in seconds.
Cached requests older than this time will be re-downloaded. If zero, cached requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR

Default: 'httpcache'

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP cache will be disabled. If a relative
path is given, is taken relative to the project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES

New in version 0.10.
Default: []

Don’t cache response with these HTTP codes.

HTTPCACHE_IGNORE_MISSING

Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES

New in version 0.10.
Default: ['file"']

Don’t cache responses with these URI schemes.

214 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

HTTPCACHE_STORAGE

Default: 'scrapy.extensions.httpcache.FilesystemCacheStorage'

The class which implements the cache storage backend.

HTTPCACHE_DBM_MODULE

New in version 0.13.
Default: 'dbm’

The database module to use in the DBM storage backend. This setting is specific to the DBM backend.

HTTPCACHE_POLICY

New in version 0.18.
Default: ' scrapy.extensions.httpcache.DummyPolicy'

The class which implements the cache policy.

HTTPCACHE_GZIP

New in version 1.0.
Default: False

If enabled, will compress all cached data with gzip. This setting is specific to the Filesystem backend.

HTTPCACHE_ALWAYS_STORE

New in version 1.1.
Default: False
If enabled, will cache pages unconditionally.

A spider may wish to have all responses available in the cache, for future use with Cache-Control: max-stale,
for instance. The DummyPolicy caches all responses but never revalidates them, and sometimes a more nuanced policy
is desirable.

This setting still respects Cache—-Control: no-store directives in responses. If you don’t want that, filter
no-store out of the Cache-Control headers in responses you feed to the cache middleware.

6.2. Downloader Middleware 215

Scrapy Documentation, Release 2.2.0

HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

New in version 1.1.
Default: []
List of Cache-Control directives in responses to be ignored.

Sites often set «no-store», «no-cache», «must-revalidate», etc., but get upset at the traffic a spider can generate if
it actually respects those directives. This allows to selectively ignore Cache-Control directives that are known to be
unimportant for the sites being crawled.

We assume that the spider will not issue Cache-Control directives in requests unless it actually needs them, so directives
in requests are not filtered.

HttpCompressionMiddleware
class scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware
This middleware allows compressed (gzip, deflate) traffic to be sent/received from web sites.

This middleware also supports decoding brotli-compressed responses, provided brotlipy is installed.

HttpCompressionMiddleware Settings
COMPRESSION_ENABLED

Default: True

Whether the Compression middleware will be enabled.

HttpProxyMiddleware

New in version 0.8.

class scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware
This middleware sets the HTTP proxy to use for requests, by setting the proxy meta value for Request
objects.

Like the Python standard library module ur11ib. request, it obeys the following environment variables:
= http proxy
m https_proxy
" NO_pProxy

You can also set the meta key proxy per-request, to a value like http://some_proxy_server:port or
http://username:password@some_proxy_server:port. Keep in mind this value will take prece-
dence over http_proxy/https_proxy environment variables, and it will also ignore no_proxy environ-
ment variable.

216 Capitulo 6. Extending Scrapy

https://www.ietf.org/rfc/rfc7932.txt
https://pypi.org/project/brotlipy/
https://docs.python.org/3/library/urllib.request.html#module-urllib.request

Scrapy Documentation, Release 2.2.0

RedirectMiddleware
class scrapy.downloadermiddlewares.redirect.RedirectMiddleware
This middleware handles redirection of requests based on response status.

The urls which the request goes through (while being redirected) can be found in the redirect_urls Request.
meta key. The reason behind each redirect in redirect_urls can be found in the redirect_reasons
Request .meta key. For example: [301, 302, 307, 'meta refresh'].

The format of a reason depends on the middleware that handled the corresponding redirect. For
example, RedirectMiddleware indicates the triggering response status code as an integer, while
MetaRefreshMiddleware always uses the 'meta refresh' string as reason.

The RedirectMiddleware can be configured through the following settings (see the settings documentation for
more info):

m REDIRECT _ENABLED
s REDIRECT MAX TIMES
If Request.metahas dont_redirect key set to True, the request will be ignored by this middleware.

If you want to handle some redirect status codes in your spider, you can specify these in the
handle_httpstatus_list spider attribute.

For example, if you want the redirect middleware to ignore 301 and 302 responses (and pass them through to your
spider) you can do this:

class MySpider (CrawlSpider) :
handle_httpstatus_list = [301, 302]

The handle_httpstatus_1list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all to True if you want to
allow any response code for a request.

RedirectMiddleware settings
REDIRECT_ENABLED

New in version 0.13.
Default: True

Whether the Redirect middleware will be enabled.

REDIRECT_MAX_TIMES

Default: 20

The maximum number of redirections that will be followed for a single request. After this maximum, the request’s
response is returned as is.

6.2. Downloader Middleware 217

Scrapy Documentation, Release 2.2.0

MetaRefreshMiddleware
class scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware
This middleware handles redirection of requests based on meta-refresh html tag.

The MetaRefreshMiddleware can be configured through the following settings (see the settings documentation
for more info):

s METAREFRESH ENABLED
s METAREFRESH IGNORE_TAGS
n METAREFRESH MAXDELAY

This middleware obey REDIRECT MAX_TIMES setting, dont_redirect, redirect_urls and
redirect_reasons request meta keys as described for RedirectMiddleware

MetaRefreshMiddleware settings

METAREFRESH_ENABLED

New in version 0.17.
Default: True

Whether the Meta Refresh middleware will be enabled.

METAREFRESH_IGNORE_TAGS

Default: []
Meta tags within these tags are ignored.

Changed in version 2.0: The default value of METAREFRESH IGNORE_TAGS changed from ['script',
'noscript'] to [].

METAREFRESH_MAXDELAY

Default: 100

The maximum meta-refresh delay (in seconds) to follow the redirection. Some sites use meta-refresh for redirecting
to a session expired page, so we restrict automatic redirection to the maximum delay.

RetryMiddleware

class scrapy.downloadermiddlewares.retry.RetryMiddleware
A middleware to retry failed requests that are potentially caused by temporary problems such as a connection
timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the end, once the spider has finished crawling all
regular (non failed) pages.

The Ret ryMiddleware can be configured through the following settings (see the settings documentation for more
info):

m RETRY ENABLED

218 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

s RETRY TIMES
s RETRY HTTP_CODES

If Request.metahas dont_retry key set to True, the request will be ignored by this middleware.

RetryMiddleware Settings
RETRY_ENABLED

New in version 0.13.
Default: True

Whether the Retry middleware will be enabled.

RETRY_TIMES

Default: 2
Maximum number of times to retry, in addition to the first download.

Maximum number of retries can also be specified per-request using max_retry_ times attribute of Request.
meta. When initialized, the max_retry times meta key takes higher precedence over the RETRY TIMES set-
ting.

RETRY_HTTP_CODES

Default: [500, 502, 503, 504, 522, 524, 408, 429]
Which HTTP response codes to retry. Other errors (DNS lookup issues, connections lost, etc) are always retried.

In some cases you may want to add 400 to RETRY HTTP_CODES because it is a common code used to indicate
server overload. It is not included by default because HTTP specs say so.

RobotsTxtMiddleware
class scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware
This middleware filters out requests forbidden by the robots.txt exclusion standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled and the ROBOTSTXT_OBEY
setting is enabled.

The ROBOTSTXT USER_AGENT setting can be used to specify the user agent string to use for matching in
the robots.txt file. If it is None, the User-Agent header you are sending with the request or the USER_AGENT
setting (in that order) will be used for determining the user agent to use in the robots.txt file.

This middleware has to be combined with a robots.txt parser.
Scrapy ships with support for the following robots.txt parsers:
= Protego (default)
= RobotFileParser
= Reppy

» Robotexclusionrulesparser

6.2. Downloader Middleware 219

https://www.robotstxt.org/
https://www.robotstxt.org/
https://www.robotstxt.org/
https://www.robotstxt.org/

Scrapy Documentation, Release 2.2.0

You can change the robots.txt parser with the ROBOTSTXT _PARSER setting. Or you can also implement support
for a new parser.

If Request.meta has dont_obey_robotstxt key set to True the request will be ignored by this middleware
even if ROBOTSTXT OBEY is enabled.

Parsers vary in several aspects:
= Language of implementation
= Supported specification
= Support for wildcard matching

= Usage of length based rule: in particular for A11ow and Disallow directives, where the most specific rule
based on the length of the path trumps the less specific (shorter) rule

Performance comparison of different parsers is available at the following link.

Protego parser

Based on Protego:
= implemented in Python
= is compliant with Google’s Robots.txt Specification
= supports wildcard matching
= uses the length based rule

Scrapy uses this parser by default.

RobotFileParser

Based on RobotFileParser:

= is Python’s built-in robots.txt parser

= is compliant with Martijn Koster’s 1996 draft specification

= lacks support for wildcard matching

= doesn’t use the length based rule
It is faster than Protego and backward-compatible with versions of Scrapy before 1.8.0.
In order to use this parser, set:

m ROBOTSTXT PARSERt0 scrapy.robotstxt.PythonRobotParser

220 Capitulo 6. Extending Scrapy

https://www.robotstxt.org/
https://developers.google.com/search/reference/robots_txt#order-of-precedence-for-group-member-lines
https://anubhavp28.github.io/gsoc-weekly-checkin-12/
https://github.com/scrapy/protego
https://developers.google.com/search/reference/robots_txt
https://docs.python.org/3/library/urllib.robotparser.html#urllib.robotparser.RobotFileParser
https://www.robotstxt.org/
https://www.robotstxt.org/norobots-rfc.txt

Scrapy Documentation, Release 2.2.0

Reppy parser

Based on Reppy:
= is a Python wrapper around Robots Exclusion Protocol Parser for C++
= is compliant with Martijn Koster’s 1996 draft specification
= supports wildcard matching
= uses the length based rule
Native implementation, provides better speed than Protego.
In order to use this parser:
= Install Reppy by running pip install reppy

= Set ROBOTSTXT PARSER setting to scrapy.robotstxt.ReppyRobotParser

Robotexclusionrulesparser

Based on Robotexclusionrulesparser:
= implemented in Python
= is compliant with Martijn Koster’s 1996 draft specification
= supports wildcard matching
= doesn’t use the length based rule
In order to use this parser:
= Install Robotexclusionrulesparser by running pip install robotexclusionrulesparser

= Set ROBOTSTXT_PARSER setting to scrapy.robotstxt.RerpRobotParser

Implementing support for a new parser
You can implement support for a new robots.txt parser by subclassing the abstract base class RobotParser and
implementing the methods described below.

class scrapy.robotstxt.RobotParser

abstract allowed (url, user_agent)
Return True if user_agent is allowed to crawl ur1, otherwise return False.

Parameters
» url (string)— Absolute URL
= user_agent (string)— User agent

abstract classmethod from crawler (crawler, robotstxt_body)
Parse the content of a robots.txt file as bytes. This must be a class method. It must return a new instance of
the parser backend.

Parameters
= crawler (Crawler instance) — crawler which made the request

= robotstxt_body (bytes)— content of a robots.txt file.

6.2. Downloader Middleware 221

https://github.com/seomoz/reppy/
https://github.com/seomoz/rep-cpp
https://www.robotstxt.org/norobots-rfc.txt
https://github.com/seomoz/reppy/
http://nikitathespider.com/python/rerp/
https://www.robotstxt.org/norobots-rfc.txt
http://nikitathespider.com/python/rerp/
https://www.robotstxt.org/
https://www.robotstxt.org/
https://docs.python.org/3/library/stdtypes.html#bytes
https://www.robotstxt.org/

Scrapy Documentation, Release 2.2.0

DownloaderStats

class scrapy.downloadermiddlewares.stats.DownloaderStats
Middleware that stores stats of all requests, responses and exceptions that pass through it.

To use this middleware you must enable the DOWNLOADER_STATS setting.

UserAgentMiddleware

class scrapy.downloadermiddlewares.useragent .UserAgentMiddleware
Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent attribute must be set.
AjaxCrawIMiddleware
class scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware

Middleware that finds “AJAX crawlable” page variants based on meta-fragment html tag. See https://developers.
google.com/search/docs/ajax-crawling/docs/getting-started for more info.

Note: Scrapy finds “AJAX crawlable” pages for URLs like 'http://example.com/!#foo=bar' even
without this middleware. AjaxCrawlMiddleware is necessary when URL doesn’t contain ' ! # '. This is often a
case for “index” or “main” website pages.

AjaxCrawlIMiddleware Settings
AJAXCRAWL_ENABLED

New in version 0.21.
Default: False

Whether the AjaxCrawlMiddleware will be enabled. You may want to enable it for broad crawls.

HttpProxyMiddleware settings
HTTPPROXY_ENABLED

Default: True

Whether or not to enable the Ht tpProxyMiddleware.

222 Capitulo 6. Extending Scrapy

https://developers.google.com/search/docs/ajax-crawling/docs/getting-started
https://developers.google.com/search/docs/ajax-crawling/docs/getting-started

Scrapy Documentation, Release 2.2.0

HTTPPROXY_AUTH_ENCODING

Default: "1atin-1"

The default encoding for proxy authentication on Ht t pProxyMiddleware.

6.3 Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing mechanism where you can plug custom
functionality to process the responses that are sent to Spiders for processing and to process the requests and items that
are generated from spiders.

6.3.1 Activating a spider middleware

To activate a spider middleware component, add it to the SPTDER _MIDDLEWARES setting, which is a dict whose
keys are the middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,

}

The SPTDER_MIDDLEWARES setting is merged with the SPTDER_MIDDLEWARES_BASE setting defined in Scrapy
(and not meant to be overridden) and then sorted by order to get the final sorted list of enabled middlewares: the
first middleware is the one closer to the engine and the last is the one closer to the spider. In other words, the
process_spider_input () method of each middleware will be invoked in increasing middleware order (100,
200, 300, ...), and the process_spider_output () method of each middleware will be invoked in decreasing
order.

To decide which order to assign to your middleware see the SPTDER MIDDLEWARES_ BASE setting and pick a value
according to where you want to insert the middleware. The order does matter because each middleware performs a
different action and your middleware could depend on some previous (or subsequent) middleware being applied.

If you want to disable a builtin middleware (the ones defined in SPTDER_MIDDLEWARES_BASE, and enabled by de-
fault) you must define it in your project SPTDER_MIDDLEWARES setting and assign None as its value. For example,
if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
'myproject.middlewares.CustomSpiderMiddleware': 543,
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': None,

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

6.3. Spider Middleware 223

Scrapy Documentation, Release 2.2.0

6.3.2 Writing your own spider middleware

Each spider middleware is a Python class that defines one or more of the methods defined below.

The main entry point is the from_crawler class method, which receives a Crawler instance. The Crawler
object gives you access, for example, to the sertings.

class scrapy.spidermiddlewares.SpiderMiddleware

process_spider_input (response, spider)

This method is called for each response that goes through the spider middleware and into the spider, for
processing.

process_spider_input () should return None or raise an exception.

If it returns None, Scrapy will continue processing this response, executing all other middlewares until,
finally, the response is handed to the spider for processing.

If it raises an exception, Scrapy won’t bother «calling any other spider middleware
process_spider_input () and will call the request errback if there is one, otherwise it will start
the process_spider_exception () chain. The output of the errback is chained back in the other
direction for process_spider_output () to process it, or process_spider._exception () if
it raised an exception.

Parameters
= response (Response object) — the response being processed

» spider (Spider object) — the spider for which this response is intended

process_spider_output (response, result, spider)

This method is called with the results returned from the Spider, after it has processed the response.
process_spider _output () mustreturn an iterable of Request objects and item object.
Parameters

= response (Response object) — the response which generated this output from the spi-
der

= result (an iterable of Request objects and ifem object) — the result returned by the
spider

= spider (Spider object) — the spider whose result is being processed

process_spider_exception (response, exception, spider)

This method is called when a spider or process_spider._output () method (from a previous spider
middleware) raises an exception.

process_spider_exception () should return either None or an iterable of Request objects and
item object.

If it returns None, Scrapy will continue processing this exception, executing any other
process_spider _exception () in the following middleware components, until no middleware
components are left and the exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider._output () pipeline kicks in, starting from the next
spider middleware, and no other process_spider_exception () will be called.

Parameters

= response (Response object) — the response being processed when the exception was
raised

224

Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

= exception (Exception object) — the exception raised
» spider (Spider object) — the spider which raised the exception

process_start_requests (start_requests, spider)
New in version 0.15.

This method is called with the start requests of the spider, and works similarly to the
process_spider_output () method, except that it doesn’t have a response associated and must
return only requests (not items).

It receives an iterable (in the start_requests parameter) and must return another iterable of
Reqguest objects.

Note: When implementing this method in your spider middleware, you should always return an iterable
(that follows the input one) and not consume all start_requests iterator because it can be very large
(or even unbounded) and cause a memory overflow. The Scrapy engine is designed to pull start requests
while it has capacity to process them, so the start requests iterator can be effectively endless where there
is some other condition for stopping the spider (like a time limit or item/page count).

Parameters
= start_requests (an iterable of Request) — the start requests
» spider (Spider object) — the spider to whom the start requests belong
from crawler (cls, crawler)
If present, this classmethod is called to create a middleware instance from a Crawler. It must return a

new instance of the middleware. Crawler object provides access to all Scrapy core components like settings
and signals; it is a way for middleware to access them and hook its functionality into Scrapy.

Parameters crawler (Crawler object) — crawler that uses this middleware

6.3.3 Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For information on how to use them
and how to write your own spider middleware, see the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the SPTDER _MIDDLEWARES_BASE setting.

DepthMiddleware

class scrapy.spidermiddlewares.depth.DepthMiddleware
DepthMiddleware is used for tracking the depth of each Request inside the site being scraped. It works by setting
request.meta['depth'] = 0 whenever there is no value previously set (usually just the first Request)
and incrementing it by 1 otherwise.

It can be used to limit the maximum depth to scrape, control Request priority based on their depth, and things
like that.

The DepthMiddleware can be configured through the following settings (see the settings documentation for
more info):

= DEPTH_LIMIT - The maximum depth that will be allowed to crawl for any site. If zero, no limit will be
imposed.

» DEPTH_STATS_VERBOSE - Whether to collect the number of requests for each depth.

6.3. Spider Middleware 225

https://docs.python.org/3/library/exceptions.html#Exception

Scrapy Documentation, Release 2.2.0

s DEPTH_PRIORITY - Whether to prioritize the requests based on their depth.

HttpErrorMiddleware

class scrapy.spidermiddlewares.httperror.HttpErrorMiddleware
Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t have to deal with them, which (most
of the time) imposes an overhead, consumes more resources, and makes the spider logic more complex.

According to the HTTP standard, successful responses are those whose status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can specify which response codes the spider is able
to handle using the handle_httpstatus_list spider attribute or HTTPERROR_ALLOWED_CODES setting.

For example, if you want your spider to handle 404 responses you can do this:

class MySpider (CrawlSpider) :
handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all to True if you want to
allow any response code for a request.

Keep in mind, however, that it’s usually a bad idea to handle non-200 responses, unless you really know what you’re
doing.

For more information see: HTTP Status Code Definitions.

HttpErrorMiddleware settings
HTTPERROR_ALLOWED_CODES

Default: []

Pass all responses with non-200 status codes contained in this list.

HTTPERROR_ALLOW_ALL

Default: False

Pass all responses, regardless of its status code.

OffsiteMiddleware

class scrapy.spidermiddlewares.offsite.OffsiteMiddleware
Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the spider’s allowed domains attri-
bute. All subdomains of any domain in the list are also allowed. E.g. the rule www.example.org will also
allow bob .www.example.org but not www2 . example.comnor example.com.

When your spider returns a request for a domain not belonging to those covered by the spider, this middleware
will log a debug message similar to this one:

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.
—com/some/page.html>

226 Capitulo 6. Extending Scrapy

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Scrapy Documentation, Release 2.2.0

To avoid filling the log with too much noise, it will only print one of these messages for each new domain
filtered. So, for example, if another request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite. comis filtered, a message will be printed (but only for the first
request filtered).

If the spider doesn’t define an allowed domains attribute, or the attribute is empty, the offsite middleware
will allow all requests.

If the request has the dont_filter attribute set, the offsite middleware will allow the request even if its
domain is not listed in allowed domains.

RefererMiddleware

class scrapy.spidermiddlewares.referer.RefererMiddleware
Populates Request Re ferer header, based on the URL of the Response which generated it.

RefererMiddleware settings

REFERER_ENABLED

New in version 0.15.
Default: True

Whether to enable referer middleware.

REFERRER_POLICY

New in version 1.4.

Default: ' scrapy.spidermiddlewares.referer.DefaultReferrerPolicy' Referrer Policy to apply
when populating Request «Referer» header.

Note: You can also set the Referrer Policy per request, using the special "referrer_ policy" Request.meta key,
with the same acceptable values as for the REFERRER_POLICY setting.

Acceptable values for REFERRER_POLICY

= ecither a path to a scrapy.spidermiddlewares.referer.ReferrerPolicy subclass — a custom
policy or one of the built-in ones (see classes below),

= or one of the standard W3C-defined string values,

= or the special "scrapy-default™".

6.3. Spider Middleware 227

https://www.w3.org/TR/referrer-policy

Scrapy Documentation, Release 2.2.0

String value Class name (as a string)

"scrapy-default" scrapy.spidermiddlewares.referer.DefaultReferrerPolicy

(default)

«no-referrer» scrapy.spidermiddlewares.referer.NoReferrerPolicy
«no-referrer-when- scrapy.spidermiddlewares.referer.NoReferrerWhenDowngradelPolicy
downgrade»

«same-origin» scrapy.spidermiddlewares.referer.SameOriginPolicy

«origin» scrapy.spidermiddlewares.referer.OriginPolicy

«strict-origin» scrapy.spidermiddlewares.referer.StrictOriginPolicy
«origin-when-cross-origin» | scrapy.spidermiddlewares.referer.OriginWhenCrossOriginPolicy
«strict-origin-when-cross- scrapy.spidermiddlewares.referer.StrictOriginWhenCrossOrjiginPolicy
origin»

«unsafe-url» scrapy.spidermiddlewares.referer.UnsafeUrlPolicy

class scrapy.spidermiddlewares.referer.DefaultReferrerPolicy
A variant of «no-referrer-when-downgrade», with the addition that «Referer» is not sent if the parent request
was using file:// or s3:// scheme.

Warning: Scrapy’s default referrer policy — just like «no-referrer-when-downgrade», the W3C-recommended
value for browsers — will send a non-empty «Referer» header from any http (s) : // toany https:// URL,
even if the domain is different.

«same-origin» may be a better choice if you want to remove referrer information for cross-domain requests.

class scrapy.spidermiddlewares.referer.NoReferrerPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer

The simplest policy is «no-referrer», which specifies that no referrer information is to be sent along with requests
made from a particular request client to any origin. The header will be omitted entirely.

class scrapy.spidermiddlewares.referer.NoReferrerWhenDowngradePolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade

The «no-referrer-when-downgrade» policy sends a full URL along with requests from a TLS-protected environ-
ment settings object to a potentially trustworthy URL, and requests from clients which are not TLS-protected to
any origin.

Requests from TLS-protected clients to non-potentially trustworthy URLSs, on the other hand, will contain no
referrer information. A Referer HTTP header will not be sent.

This is a user agent’s default behavior, if no policy is otherwise specified.

Note: «no-referrer-when-downgrade» policy is the W3C-recommended default, and is used by major web browsers.

However, it is NOT Scrapy’s default referrer policy (see DefaultReferrerPolicy).

class scrapy.spidermiddlewares.referer.SameOriginPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin

The «same-origin» policy specifies that a full URL, stripped for use as a referrer, is sent as referrer information
when making same-origin requests from a particular request client.

Cross-origin requests, on the other hand, will contain no referrer information. A Referer HTTP header will not
be sent.

228 Capitulo 6. Extending Scrapy

https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-unsafe-url
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer
https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin

Scrapy Documentation, Release 2.2.0

class scrapy.spidermiddlewares.referer.OriginPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin

The «origin» policy specifies that only the ASCII serialization of the origin of the request client is sent as referrer
information when making both same-origin requests and cross-origin requests from a particular request client.

class scrapy.spidermiddlewares.referer.StrictOriginPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin

The «strict-origin» policy sends the ASCII serialization of the origin of the request client when making requests:
- from a TLS-protected environment settings object to a potentially trustworthy URL, and - from non-TLS-
protected environment settings objects to any origin.

Requests from TLS-protected request clients to non- potentially trustworthy URLs, on the other hand, will
contain no referrer information. A Referer HTTP header will not be sent.

class scrapy.spidermiddlewares.referer.OriginWhenCrossOriginPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin-when-cross-origin

The «origin-when-cross-origin» policy specifies that a full URL, stripped for use as a referrer, is sent as referrer
information when making same-origin requests from a particular request client, and only the ASCII serialization
of the origin of the request client is sent as referrer information when making cross-origin requests from a
particular request client.

class scrapy.spidermiddlewares.referer.StrictOriginWhenCrossOriginPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin

The «strict-origin-when-cross-origin» policy specifies that a full URL, stripped for use as a referrer, is sent as
referrer information when making same-origin requests from a particular request client, and only the ASCII
serialization of the origin of the request client when making cross-origin requests:

= from a TLS-protected environment settings object to a potentially trustworthy URL, and
» from non-TLS-protected environment settings objects to any origin.

Requests from TLS-protected clients to non- potentially trustworthy URLS, on the other hand, will contain no
referrer information. A Referer HTTP header will not be sent.

class scrapy.spidermiddlewares.referer.UnsafeUrlPolicy
https://www.w3.org/TR/referrer-policy/#referrer-policy-unsafe-url

The «unsafe-url» policy specifies that a full URL, stripped for use as a referrer, is sent along with both cross-
origin requests and same-origin requests made from a particular request client.

Note: The policy’s name doesn’t lie; it is unsafe. This policy will leak origins and paths from TLS-protected
resources to insecure origins. Carefully consider the impact of setting such a policy for potentially sensitive
documents.

6.3. Spider Middleware 229

https://www.w3.org/TR/referrer-policy/#referrer-policy-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin
https://www.w3.org/TR/referrer-policy/#referrer-policy-unsafe-url

Scrapy Documentation, Release 2.2.0

Warning: «unsafe-url» policy is NOT recommended.

UrlLengthMiddleware
class scrapy.spidermiddlewares.urllength.UrlLengthMiddleware
Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following settings (see the settings documenta-
tion for more info):

» URLLENGTH_LIMIT - The maximum URL length to allow for crawled URLs.

6.4 Extensions

The extensions framework provides a mechanism for inserting your own custom functionality into Scrapy.

Extensions are just regular classes that are instantiated at Scrapy startup, when extensions are initialized.

6.4.1 Extension settings

Extensions use the Scrapy settings to manage their settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to avoid collision with existing
(and future) extensions. For example, a hypothetic extension to handle Google Sitemaps would use settings like
GOOGLESITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

6.4.2 Loading & activating extensions
Extensions are loaded and activated at startup by instantiating a single instance of the extension class. Therefore, all
the extension initialization code must be performed in the class __init___ method.

To make an extension available, add it to the EXTENSTONS setting in your Scrapy settings. In EXTENSIONS, each
extension is represented by a string: the full Python path to the extension’s class name. For example:

EXTENSIONS = {
'scrapy.extensions.corestats.CoreStats': 500,
'scrapy.extensions.telnet.TelnetConsole': 500,

As you can see, the EXTENSIONS setting is a dict where the keys are the extension paths, and their values are the
orders, which define the extension loading order. The EXTENSTONS setting is merged with the EXTENSTONS_BASE
setting defined in Scrapy (and not meant to be overridden) and then sorted by order to get the final sorted list of enabled
extensions.

As extensions typically do not depend on each other, their loading order is irrelevant in most cases. This is why the
EXTENSIONS_BASE setting defines all extensions with the same order (0). However, this feature can be exploited if
you need to add an extension which depends on other extensions already loaded.

230 Capitulo 6. Extending Scrapy

https://en.wikipedia.org/wiki/Sitemaps

Scrapy Documentation, Release 2.2.0

6.4.3 Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a particular setting. For example, the
HTTP Cache extension is available by default but disabled unless the HTTPCACHE_ENABLED setting is set.

6.4.4 Disabling an extension

In order to disable an extension that comes enabled by default (i.e. those included in the EXTENSIONS_BASE setting)
you must set its order to None. For example:

EXTENSIONS = {
'scrapy.extensions.corestats.CoreStats': None,

6.4.5 Writing your own extension

Each extension is a Python class. The main entry point for a Scrapy extension (this also includes middlewares and
pipelines) is the from_crawler class method which receives a Crawler instance. Through the Crawler object you
can access settings, signals, stats, and also control the crawling behaviour.

Typically, extensions connect to signals and perform tasks triggered by them.

Finally, if the from_crawler method raises the Not Configured exception, the extension will be disabled. Ot-
herwise, the extension will be enabled.

Sample extension
Here we will implement a simple extension to illustrate the concepts described in the previous section. This extension
will log a message every time:

= a spider is opened

= a spider is closed

= a specific number of items are scraped

The extension will be enabled through the MYEXT_ENABLED setting and the number of items will be specified through
the MYEXT_ITEMCOUNT setting.

Here is the code of such extension:

import logging
from scrapy import signals
from scrapy.exceptions import NotConfigured

logger = logging.getLogger (_ name_)
class SpiderOpenCloseLogging:
def _ init_ (self, item_count):
self.item_count = item_count
self.items_scraped = 0
@classmethod

def from_crawler (cls, crawler):
first check if the extension should be enabled and raise

(continues on next page)

6.4. Extensions 231

Scrapy Documentation, Release 2.2.0

(continued from previous page)

NotConfigured otherwise
if not crawler.settings.getbool ("MYEXT_ENABLED'") :
raise NotConfigured

get the number of items from settings

item_count = crawler.settings.getint ('MYEXT ITEMCOUNT', 1000)

instantiate the extension object
ext = cls(item_count)

connect the extension object to signals

crawler.signals.connect (ext.spider_opened, signal=signals.spider_opened)
crawler.signals.connect (ext.spider_closed, signal=signals.spider_closed)
crawler.signals.connect (ext.item_scraped, signal=signals.item_scraped)

return the extension object
return ext

def spider_opened(self, spider):
logger.info ("opened spider ¢s", spider.name)

def spider_closed(self, spider):
logger.info("closed spider ¢s", spider.name)

def item_scraped(self, item, spider):
self.items_scraped += 1

o

if self.items_scraped % self.item_count ==

logger.info ("scraped %d items", self.items_scraped)

6.4.6 Built-in extensions reference
General purpose extensions

Log Stats extension

class scrapy.extensions.logstats.LogStats

Log basic stats like crawled pages and scraped items.

232

Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

Core Stats extension

class scrapy.extensions.corestats.CoreStats

Enable the collection of core statistics, provided the stats collection is enabled (see Stats Collection).

Telnet console extension

class scrapy.extensions.telnet.TelnetConsole

Provides a telnet console for getting into a Python interpreter inside the currently running Scrapy process, which can
be very useful for debugging.

The telnet console must be enabled by the TELNETCONSOLE_ENABLED setting, and the server will listen in the port
specified in TELNETCONSOLE_PORT.

Memory usage extension

class scrapy.extensions.memusage.MemoryUsage

Note: This extension does not work in Windows.

Monitors the memory used by the Scrapy process that runs the spider and:
1. sends a notification e-mail when it exceeds a certain value
2. closes the spider when it exceeds a certain value

The notification e-mails can be triggered when a certain warning value is reached (MEMUSAGE_WARNING_MB) and
when the maximum value is reached (MEMUSAGE_LIMIT_MB) which will also cause the spider to be closed and the
Scrapy process to be terminated.

This extension is enabled by the MEMUSAGE_ENABLED setting and can be configured with the following settings:
» MEMUSAGE _LIMIT MB
s MEMUSAGE_WARNING MB
s MEMUSAGE_NOTIFY MAIL

s MEMUSAGE_CHECK_INTERVAIL_SECONDS

Memory debugger extension

class scrapy.extensions.memdebug.MemoryDebugger
An extension for debugging memory usage. It collects information about:
= objects uncollected by the Python garbage collector
= objects left alive that shouldn’t. For more info, see Debugging memory leaks with trackref

To enable this extension, turn on the MEMDEBUG_ENABLED setting. The info will be stored in the stats.

6.4. Extensions 233

Scrapy Documentation, Release 2.2.0

Close spider extension

class scrapy.extensions.closespider.CloseSpider
Closes a spider automatically when some conditions are met, using a specific closing reason for each condition.
The conditions for closing a spider can be configured through the following settings:

s CLOSESPIDER TIMEOUT

s CLOSESPIDER ITEMCOUNT

CLOSESPIDER _PAGECOUNT

CLOSESPIDER ERRORCOUNT

CLOSESPIDER_TIMEOUT

Default: 0

An integer which specifies a number of seconds. If the spider remains open for more than that number of second, it
will be automatically closed with the reason closespider_timeout. If zero (or non set), spiders won’t be closed
by timeout.

CLOSESPIDER_ITEMCOUNT

Default: 0

An integer which specifies a number of items. If the spider scrapes more than that amount and those items are passed
by the item pipeline, the spider will be closed with the reason closespider_itemcount. Requests which are
currently in the downloader queue (up to CONCURRENT_REQUESTS requests) are still processed. If zero (or non
set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT

New in version 0.11.
Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider crawls more than that, the spider
will be closed with the reason closespider_pagecount. If zero (or non set), spiders won’t be closed by number
of crawled responses.

CLOSESPIDER_ERRORCOUNT

New in version 0.11.
Default: 0

An integer which specifies the maximum number of errors to receive before closing the spider. If the spider generates
more than that number of errors, it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

234 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

StatsMailer extension

class scrapy.extensions.statsmailer.StatsMailer

This simple extension can be used to send a notification e-mail every time a domain has finished scraping, including
the Scrapy stats collected. The email will be sent to all recipients specified in the STATSMATLER_RCPTS setting.

Debugging extensions

Stack trace dump extension

class scrapy.extensions.debug.StackTraceDump

Dumps information about the running process when a SIGQUIT or SIGUSR?2 signal is received. The information
dumped is the following:

1. engine status (using scrapy.utils.engine.get_engine_status())
2. live references (see Debugging memory leaks with trackref)
3. stack trace of all threads
After the stack trace and engine status is dumped, the Scrapy process continues running normally.

This extension only works on POSIX-compliant platforms (i.e. not Windows), because the SIGQUIT and SIGUSR2
signals are not available on Windows.

There are at least two ways to send Scrapy the SIGQUIT signal:
1. By pressing Ctrl-while a Scrapy process is running (Linux only?)

2. By running this command (assuming <pid> is the process id of the Scrapy process):

kill -QUIT <pid>

Debugger extension

class scrapy.extensions.debug.Debugger

Invokes a Python debugger inside a running Scrapy process when a SIGUSR?2 signal is received. After the debugger
is exited, the Scrapy process continues running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (i.e. not Windows).

6.5 Core API

New in version 0.15.

This section documents the Scrapy core APIL, and it’s intended for developers of extensions and middlewares.

6.5. Core API 235

https://en.wikipedia.org/wiki/SIGQUIT
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
https://en.wikipedia.org/wiki/SIGQUIT
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
https://en.wikipedia.org/wiki/SIGQUIT
https://docs.python.org/3/library/pdb.html
https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2
https://pythonconquerstheuniverse.wordpress.com/2009/09/10/debugging-in-python/

Scrapy Documentation, Release 2.2.0

6.5.1 Crawler API

The main entry point to Scrapy APl is the Crawler object, passed to extensions through the from_crawler class
method. This object provides access to all Scrapy core components, and it’s the only way for extensions to access them
and hook their functionality into Scrapy.

The Extension Manager is responsible for loading and keeping track of installed extensions and it’s configured through
the EXTENSTIONS setting which contains a dictionary of all available extensions and their order similar to how you
configure the downloader middlewares.

class scrapy.crawler.Crawler (spidercls, settings)
The Crawler object must be instantiated with a scrapy.spiders.Spider subclass and a scrapy.
settings.Settings object.

settings
The settings manager of this crawler.

This is used by extensions & middlewares to access the Scrapy settings of this crawler.
For an introduction on Scrapy settings see Settings.
For the API see Settings class.

signals
The signals manager of this crawler.

This is used by extensions & middlewares to hook themselves into Scrapy functionality.
For an introduction on signals see Signals.
For the APl see SignalManager class.

stats
The stats collector of this crawler.

This is used from extensions & middlewares to record stats of their behaviour, or access stats collected by
other extensions.

For an introduction on stats collection see Stats Collection.
For the APl see StatsCollector class.

extensions
The extension manager that keeps track of enabled extensions.

Most extensions won’t need to access this attribute.
For an introduction on extensions and a list of available extensions on Scrapy see Extensions.

engine
The execution engine, which coordinates the core crawling logic between the scheduler, downloader and
spiders.

Some extension may want to access the Scrapy engine, to inspect or modify the downloader and scheduler
behaviour, although this is an advanced use and this API is not yet stable.

spider
Spider currently being crawled. This is an instance of the spider class provided while constructing the
crawler, and it is created after the arguments given in the craw! () method.

crawl (*args, **kwargs)
Starts the crawler by instantiating its spider class with the given args and kwargs arguments, while
setting the execution engine in motion.

Returns a deferred that is fired when the crawl is finished.

236 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

stop ()
Starts a graceful stop of the crawler and returns a deferred that is fired when the crawler is stopped.

class scrapy.crawler.CrawlerRunner (settings=None)
This is a convenient helper class that keeps track of, manages and runs crawlers inside an already setup
reactor.

The CrawlerRunner object must be instantiated with a Sett ings object.

This class shouldn’t be needed (since Scrapy is responsible of using it accordingly) unless writing scripts that
manually handle the crawling process. See Run Scrapy from a script for an example.

crawl (crawler_or_spidercls, *args, **kwargs)
Run a crawler with the provided arguments.

It will call the given Crawler’s crawl () method, while keeping track of it so it can be stopped later.

If crawler_or_spidercls isn’t a Crawler instance, this method will try to create one using this
parameter as the spider class given to it.

Returns a deferred that is fired when the crawling is finished.
Parameters

» crawler_or_spidercls (Crawler instance, Spider subclass or string) — already
created crawler, or a spider class or spider’s name inside the project to create it

» args (Iist)— arguments to initialize the spider
= kwargs (dict)—keyword arguments to initialize the spider

property crawlers
Set of crawlers started by crawl () and managed by this class.

create_crawler (crawler_or_spidercls)
Return a Crawler object.

s Ifcrawler_or_spidercls isa Crawler, it is returned as-is.
= If crawler_or_spidercls is a Spider subclass, a new Crawler is constructed for it.

» If crawler_or_spidercls is a string, this function finds a spider with this name in a Scrapy
project (using spider loader), then creates a Crawler instance for it.

join ()
Returns a deferred that is fired when all managed crawlers have completed their executions.

stop ()
Stops simultaneously all the crawling jobs taking place.

Returns a deferred that is fired when they all have ended.

class scrapy.crawler.CrawlerProcess (settings=None, install_root_handler=True)
Bases: scrapy.crawler.CrawlerRunner

A class to run multiple scrapy crawlers in a process simultaneously.

This class extends CrawlerRunner by adding support for starting a reactor and handling shutdown sig-
nals, like the keyboard interrupt command Ctrl-C. It also configures top-level logging.

This utility should be a better fit than CrawlerRunner if you aren’t running another reactor within your
application.

The CrawlerProcess object must be instantiated with a Set t ings object.

Parameters install_root_handler — whether to install root logging handler (default: True)

6.5. Core API 237

https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html

Scrapy Documentation, Release 2.2.0

This class shouldn’t be needed (since Scrapy is responsible of using it accordingly) unless writing scripts that
manually handle the crawling process. See Run Scrapy from a script for an example.

crawl (crawler_or_spidercls, *args, **kwargs)
Run a crawler with the provided arguments.

It will call the given Crawler’s crawl () method, while keeping track of it so it can be stopped later.

If crawler_or_spidercls isn’t a Crawler instance, this method will try to create one using this
parameter as the spider class given to it.

Returns a deferred that is fired when the crawling is finished.
Parameters

» crawler_or_spidercls (Crawler instance, Spider subclass or string) — already
created crawler, or a spider class or spider’s name inside the project to create it

» args (I1st)— arguments to initialize the spider
» kwargs (dict)—keyword arguments to initialize the spider

property crawlers
Set of crawlers started by crawl () and managed by this class.

create_crawler (crawler_or_spidercls)
Return a Crawler object.

s [fcrawler_or_spidercls is a Crawler, it is returned as-is.
» [fcrawler_or_spidercls is a Spider subclass, a new Crawler is constructed for it.

» If crawler_or_spidercls is a string, this function finds a spider with this name in a Scrapy
project (using spider loader), then creates a Crawler instance for it.
join ()
Returns a deferred that is fired when all managed crawlers have completed their executions.
start (stop_after_crawl=True)

This method starts a reactor, adjusts its pool size to REACTOR_THREADPOOIL_MAXSIZE, and installs
a DNS cache based on DNSCACHE_ENABLED and DNSCACHE,_STZE.

If stop_after_crawl is True, the reactor will be stopped after all crawlers have finished, using
join().

Parameters stop_after_ crawl (boolean) — stop or not the reactor when all crawlers
have finished

stop ()
Stops simultaneously all the crawling jobs taking place.

Returns a deferred that is fired when they all have ended.

238 Capitulo 6. Extending Scrapy

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html

Scrapy Documentation, Release 2.2.0

6.5.2 Settings API

scrapy.settings.SETTINGS_PRIORITIES
Dictionary that sets the key name and priority level of the default settings priorities used in Scrapy.

Each item defines a settings entry point, giving it a code name for identification and an integer priority. Greater
priorities take more precedence over lesser ones when setting and retrieving values in the Settings class.

SETTINGS_PRIORITIES = {
'default': 0,
'command': 10,
'project': 20,
'spider': 30,
'cmdline': 40,

For a detailed explanation on each settings sources, see: Settings.

scrapy.settings.get_settings_priority (priority)
Small helper function that looks up a given string priority in the SETTINGS_PRIORITIES dictionary and
returns its numerical value, or directly returns a given numerical priority.

class scrapy.settings.Settings (values=None, priority="project’)
Bases: scrapy.settings.BaseSettings

This object stores Scrapy settings for the configuration of internal components, and can be used for any further
customization.

It is a direct subclass and supports all methods of BaseSet t ings. Additionally, after instantiation of this class,
the new object will have the global default settings described on Built-in settings reference already populated.

class scrapy.settings.BaseSettings (values=None, priority='project’)
Instances of this class behave like dictionaries, but store priorities along with their (key, value) pairs, and
can be frozen (i.e. marked immutable).

Key-value entries can be passed on initialization with the values argument, and they would take the
priority level (unless values is already an instance of BaseSettings, in which case the existing
priority levels will be kept). If the priority argument is a string, the priority name will be looked up in
SETTINGS_PRIORITIES. Otherwise, a specific integer should be provided.

Once the object is created, new settings can be loaded or updated with the set () method, and can be acces-
sed with the square bracket notation of dictionaries, or with the get () method of the instance and its value
conversion variants. When requesting a stored key, the value with the highest priority will be retrieved.

copy ()
Make a deep copy of current settings.

This method returns a new instance of the Settings class, populated with the same values and their
priorities.

Modifications to the new object won’t be reflected on the original settings.

copy_to_dict ()
Make a copy of current settings and convert to a dict.

This method returns a new dict populated with the same values and their priorities as the current settings.
Modifications to the returned dict won’t be reflected on the original settings.
This method can be useful for example for printing settings in Scrapy shell.

freeze ()
Disable further changes to the current settings.

6.5. Core API 239

Scrapy Documentation, Release 2.2.0

After calling this method, the present state of the settings will become immutable. Trying to change values
through the set () method and its variants won’t be possible and will be alerted.

frozencopy ()
Return an immutable copy of the current settings.

Alias for a freeze () call in the object returned by copy ().

get (name, default=None)
Get a setting value without affecting its original type.

Parameters
= name (string) — the setting name
» default (any) — the value to return if no setting is found

getbool (name, default=False)
Get a setting value as a boolean.

1,'1', True and 'True' return True, while 0, '0', False, 'False' and None return False.

For example, settings populated through environment variables set to ' 0 ' will return False when using
this method.

Parameters
= name (string) — the setting name
» default (any) — the value to return if no setting is found

getdict (name, default=None)
Get a setting value as a dictionary. If the setting original type is a dictionary, a copy of it will be returned.
If it is a string it will be evaluated as a JSON dictionary. In the case that it is a BaseSettings instance
itself, it will be converted to a dictionary, containing all its current settings values as they would be returned
by get (), and losing all information about priority and mutability.

Parameters
= name (string) - the setting name
» default (any) — the value to return if no setting is found

getfloat (name, default=0.0)
Get a setting value as a float.

Parameters
» name (string) — the setting name
= default (any) — the value to return if no setting is found

getint (name, default=0)
Get a setting value as an int.

Parameters
» name (string) — the setting name
= default (any) — the value to return if no setting is found

getlist (name, default=None)
Get a setting value as a list. If the setting original type is a list, a copy of it will be returned. If it’s a string
it will be split by «,».

For example, settings populated through environment variables set to ' one, two ' will return a list [“one”,
“two”’] when using this method.

240 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

Parameters
» name (string) — the setting name
» default (any) — the value to return if no setting is found

getpriority (name)
Return the current numerical priority value of a setting, or None if the given name does not exist.

Parameters name (string) - the setting name

getwithbase (name)
Get a composition of a dictionary-like setting and its _BASE counterpart.

Parameters name (string)—name of the dictionary-like setting

maxpriority ()
Return the numerical value of the highest priority present throughout all settings, or the numerical value
for default from SETTINGS_PRIORITIES if there are no settings stored.

set (name, value, priority="project’)
Store a key/value attribute with a given priority.

Settings should be populated before configuring the Crawler object (through the configure () method),
otherwise they won’t have any effect.

Parameters
» name (string) — the setting name
= value (any) — the value to associate with the setting

» priority (string or int) — the priority of the setting. Should be a key of
SETTINGS _PRIORITIES or an integer

setmodule (module, priority="project’)
Store settings from a module with a given priority.

This is a helper function that calls set () for every globally declared uppercase variable of module with
the provided priority.

Parameters
» module (module object or string)-the module or the path of the module

» priority (string or int) — the priority of the settings. Should be a key of
SETTINGS PRIORITIES or an integer

update (values, priority="project’)
Store key/value pairs with a given priority.

This is a helper function that calls set () for every item of values with the provided priority.

If values is a string, it is assumed to be JSON-encoded and parsed into a dict with json. loads ()
first. If it is a BaseSett i ngs instance, the per-key priorities will be used and the priority parameter
ignored. This allows inserting/updating settings with different priorities with a single command.

Parameters
= values (dict or string or BaseSettings) — the settings names and values

» priority (string or int) — the priority of the settings. Should be a key of
SETTINGS_PRIORITIES or an integer

6.5. Core API 241

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Scrapy Documentation, Release 2.2.0

6.5.3 SpiderLoader API

class scrapy.spiderloader.SpiderLoader
This class is in charge of retrieving and handling the spider classes defined across the project.

Custom spider loaders can be employed by specifying their path in the SPTDER LOADER CLASS project
setting. They must fully implement the scrapy.interfaces.ISpiderLoader interface to guarantee an
errorless execution.

from_settings (settings)
This class method is used by Scrapy to create an instance of the class. It’s called with the current project
settings, and it loads the spiders found recursively in the modules of the SPTDER_MODULES setting.

Parameters settings (Settings instance) — project settings

load (spider_name)
Get the Spider class with the given name. It’ll look into the previously loaded spiders for a spider class
with name spider_name and will raise a KeyError if not found.

Parameters spider_name (st r) — spider class name

list ()
Get the names of the available spiders in the project.

find by_request (request)
List the spiders” names that can handle the given request. Will try to match the request’s url against the
domains of the spiders.

Parameters request (Request instance) — queried request

6.5.4 Signals API

class scrapy.signalmanager.SignalManager (sender=_Anonymous)

connect (receiver, signal, **kwargs)
Connect a receiver function to a signal.

The signal can be any object, although Scrapy comes with some predefined signals that are documented in
the Signals section.

Parameters
= receiver (callable) - the function to be connected
= signal (object) — the signal to connect to

disconnect (receiver, signal, **kwargs)
Disconnect a receiver function from a signal. This has the opposite effect of the connect () method, and
the arguments are the same.

disconnect_all (signal, **kwargs)
Disconnect all receivers from the given signal.

Parameters signal (ob ject) — the signal to disconnect from

send_catch_log (signal, **kwargs)
Send a signal, catch exceptions and log them.

The keyword arguments are passed to the signal handlers (connected through the connect () method).

242 Capitulo 6. Extending Scrapy

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Scrapy Documentation, Release 2.2.0

send_catch_log_deferred (signal, **kwargs)
Like send _catch_log () but supports returning De ferred objects from signal handlers.

Returns a Deferred that gets fired once all signal handlers deferreds were fired. Send a signal, catch excep-
tions and log them.

The keyword arguments are passed to the signal handlers (connected through the connect () method).

6.5.5 Stats Collector API

There are several Stats Collectors available under the scrapy. statscollectors module and they all implement
the Stats Collector API defined by the StatsCollector class (which they all inherit from).

class scrapy.statscollectors.StatsCollector

get_value (key, default=None)
Return the value for the given stats key or default if it doesn’t exist.

get_stats ()
Get all stats from the currently running spider as a dict.

set_value (key, value)
Set the given value for the given stats key.

set_stats (stats)
Override the current stats with the dict passed in stats argument.

inc_value (key, count=1, start=0)
Increment the value of the given stats key, by the given count, assuming the start value given (when it’s not
set).

max_value (key, value)
Set the given value for the given key only if current value for the same key is lower than value. If there is
no current value for the given key, the value is always set.

min_value (key, value)
Set the given value for the given key only if current value for the same key is greater than value. If there is
no current value for the given key, the value is always set.

clear_ stats ()
Clear all stats.

The following methods are not part of the stats collection api but instead used when implementing custom stats
collectors:

open_spider (spider)
Open the given spider for stats collection.

close_spider (spider)
Close the given spider. After this is called, no more specific stats can be accessed or collected.

6.5. Core API 243

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html

Scrapy Documentation, Release 2.2.0

6.6 Signals

Scrapy uses signals extensively to notify when certain events occur. You can catch some of those signals in your
Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy to add functionality not
provided out of the box.

Even though signals provide several arguments, the handlers that catch them don’t need to accept all of them - the
signal dispatching mechanism will only deliver the arguments that the handler receives.

You can connect to signals (or send your own) through the Signals API.

Here is a simple example showing how you can catch signals and perform some action:

from scrapy import signals
from scrapy import Spider

class DmozSpider (Spider) :
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/",

@classmethod
def from_crawler(cls, crawler, =*args, =*xkwargs):
spider = super (DmozSpider, cls).from_crawler (crawler, =xargs, =**kwargs)

crawler.signals.connect (spider.spider_closed, signal=signals.spider_closed)
return spider

def spider_closed(self, spider):
spider.logger.info('Spider closed: ', spider.name)

def parse(self, response):
pass

6.6.1 Deferred signal handlers

Some signals support returning De ferred objects from their handlers, allowing you to run asynchronous code that
does not block Scrapy. If a signal handler returns a De fe rred, Scrapy waits for that De ferred to fire.

Let’s take an example:

class SignalSpider (scrapy.Spider) :
name = 'signals'
start_urls = ['http://quotes.toscrape.com/page/1/"']

@classmethod
def from_crawler(cls, crawler, =*args, =*xkwargs):
spider = super (SignalSpider, cls).from_crawler (crawler, =xargs, =*=*kwargs)

crawler.signals.connect (spider.item_scraped, signal=signals.item_scraped)
return spider

(continues on next page)

244 Capitulo 6. Extending Scrapy

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html

Scrapy Documentation, Release 2.2.0

(continued from previous page)

def item_scraped(self, item):
Send the scraped item to the server
d = treqg.post(
'http://example.com/post"',
json.dumps (item) .encode ('ascii'),
headers={b'Content-Type': [b'application/json']}

The next item will be scraped only after
deferred (d) is fired
return d

def parse(self, response):
for quote in response.css('div.quote'):

yield {
'text': quote.css('span.text::text').get (),
'author': quote.css('small.author::text').get (),

'tags': quote.css('div.tags a.tag::text').getall(),

See the Built-in signals reference below to know which signals support Deferred.

6.6.2 Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

Engine signals

engine_started

scrapy.signals.engine_started ()
Sent when the Scrapy engine has started crawling.

This signal supports returning deferreds from its handlers.

Note: This signal may be fired after the spider opened signal, depending on how the spider was started. So don’t

rely on this signal getting fired before spider._opened.

engine_stopped

scrapy.signals.engine_stopped ()
Sent when the Scrapy engine is stopped (for example, when a crawling process has finished).

This signal supports returning deferreds from its handlers.

6.6. Signals

245

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html

Scrapy Documentation, Release 2.2.0

Iltem signals

Note: As at max CONCURRENT ITEMS items are processed in parallel, many deferreds are fired together using
DeferredList. Hence the next batch waits for the De ferredLi st to fire and then runs the respective item signal
handler for the next batch of scraped items.

item_scraped

scrapy.signals.item_scraped (item, response, spider)
Sent when an item has been scraped, after it has passed all the Irem Pipeline stages (without being dropped).

This signal supports returning deferreds from its handlers.
Parameters
= item (item object) — the scraped item
= spider (Spider object) — the spider which scraped the item

= response (Response object) — the response from where the item was scraped

item_dropped

scrapy.signals.item_dropped (item, response, exception, spider)
Sent after an item has been dropped from the Item Pipeline when some stage raised a DropItem exception.

This signal supports returning deferreds from its handlers.
Parameters
= item (ifem object) — the item dropped from the /tem Pipeline
= spider (Spider object) — the spider which scraped the item
= response (Response object) — the response from where the item was dropped

= exception (DropItem exception) — the exception (which must be a DropItem sub-
class) which caused the item to be dropped

item_error

scrapy.signals.item_error (item, response, spider, failure)
Sent when a Item Pipeline generates an error (i.e. raises an exception), except DropItem exception.

This signal supports returning deferreds from its handlers.
Parameters
= item (item object) — the item that caused the error in the /tem Pipeline

= response (Response object) — the response being processed when the exception was
raised

» spider (Spider object) — the spider which raised the exception

» failure (twisted.python.failure.Failure)— the exception raised

246 Capitulo 6. Extending Scrapy

https://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html
https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 2.2.0

Spider signals

spider_closed

scrapy.signals.spider_closed (spider, reason)
Sent after a spider has been closed. This can be used to release per-spider resources reserved on
spider._opened.

This signal supports returning deferreds from its handlers.
Parameters
= spider (Spider object) — the spider which has been closed

= reason (str) — a string which describes the reason why the spider was closed. If it was
closed because the spider has completed scraping, the reason is ' finished'. Otherwise,
if the spider was manually closed by calling the close_spider engine method, then
the reason is the one passed in the reason argument of that method (which defaults to
'cancelled"). If the engine was shutdown (for example, by hitting Ctrl-C to stop it) the
reason will be ' shutdown"'.

spider_opened

scrapy.signals.spider_opened (spider)
Sent after a spider has been opened for crawling. This is typically used to reserve per-spider resources, but can
be used for any task that needs to be performed when a spider is opened.

This signal supports returning deferreds from its handlers.

Parameters spider (Spider object)— the spider which has been opened

spider_idle

scrapy.signals.spider_ idle (spider)
Sent when a spider has gone idle, which means the spider has no further:

= requests waiting to be downloaded
= requests scheduled
= items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished, the engine starts closing the spider. After
the spider has finished closing, the spider_closed signal is sent.

You may raise a DontCloseSpider exception to prevent the spider from being closed.
This signal does not support returning deferreds from its handlers.

Parameters spider (Spider object) — the spider which has gone idle

Note: Scheduling some requests in your spider. idle handler does not guarantee that it can prevent the spider
from being closed, although it sometimes can. That’s because the spider may still remain idle if all the scheduled
requests are rejected by the scheduler (e.g. filtered due to duplication).

6.6. Signals 247

https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

spider_error

scrapy.signals.spider_ error (failure, response, spider)
Sent when a spider callback generates an error (i.e. raises an exception).

This signal does not support returning deferreds from its handlers.
Parameters
» failure (twisted.python.failure.Failure) - the exception raised

= response (Response object) — the response being processed when the exception was
raised

= spider (Spider object) — the spider which raised the exception

Request signals

request_scheduled

scrapy.signals.request_scheduled (request, spider)
Sent when the engine schedules a Request, to be downloaded later.

This signal does not support returning deferreds from its handlers.
Parameters
= request (Request object) — the request that reached the scheduler

» spider (Spider object) — the spider that yielded the request

request_dropped

scrapy.signals.request_dropped (request, spider)
Sent when a Request, scheduled by the engine to be downloaded later, is rejected by the scheduler.

This signal does not support returning deferreds from its handlers.
Parameters
» request (Request object) — the request that reached the scheduler

= spider (Spider object) — the spider that yielded the request

request_reached_downloader

scrapy.signals.request_reached_downloader (request, spider)
Sent when a Reque st reached downloader.

This signal does not support returning deferreds from its handlers.
Parameters
» request (Request object) — the request that reached downloader

= spider (Spider object) — the spider that yielded the request

248 Capitulo 6. Extending Scrapy

https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html

Scrapy Documentation, Release 2.2.0

request_left_downloader

scrapy.signals.request_left_downloader (request, spider)
New in version 2.0.

Sent when a Request leaves the downloader, even in case of failure.
This signal does not support returning deferreds from its handlers.
Parameters
= request (Request object) — the request that reached the downloader

» spider (Spider object) — the spider that yielded the request

bytes_received

New in version 2.2.

scrapy.signals.bytes_received (data, request, spider)
Sent by the HTTP 1.1 and S3 download handlers when a group of bytes is received for a specific request. This
signal might be fired multiple times for the same request, with partial data each time. For instance, a possible
scenario for a 25 kb response would be two signals fired with 10 kb of data, and a final one with 5 kb of data.

This signal does not support returning deferreds from its handlers.
Parameters
= data (bytes object) — the data received by the download handler
» request (Request object) — the request that generated the download

= spider (Spider object) — the spider associated with the response

Note: Handlers of this signal can stop the download of a response while it is in progress by raising the

StopDownload exception. Please refer to the Stopping the download of a Response topic for additional information
and examples.

Response signals

response_received

scrapy.signals.response_received (response, request, spider)
Sent when the engine receives a new Response from the downloader.

This signal does not support returning deferreds from its handlers.
Parameters
= response (Response object) — the response received
» request (Request object) — the request that generated the response

» spider (Spider object) — the spider for which the response is intended

6.6. Signals 249

https://docs.python.org/3/library/stdtypes.html#bytes

Scrapy Documentation, Release 2.2.0

response_downloaded

scrapy.signals.response_downloaded (response, request, spider)
Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from its handlers.
Parameters
= response (Response object) — the response downloaded
= request (Request object) — the request that generated the response

» spider (Spider object) — the spider for which the response is intended

6.7 Iltem Exporters

Once you have scraped your items, you often want to persist or export those items, to use the data in some other
application. That is, after all, the whole purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different output formats, such as XML, CSV or
JSON.

6.7.1 Using ltem Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped data see the Feed exports. Otherwise, if
you want to know how Item Exporters work or need more custom functionality (not covered by the default exports),
continue reading below.

In order to use an Item Exporter, you must instantiate it with its required args. Each Item Exporter requires different
arguments, so check each exporter documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated your exporter, you have to:

1. call the method start_exporting () in order to signal the beginning of the exporting process
2. call the export_item () method for each item you want to export
3. and finally call the finish exporting () to signal the end of the exporting process

Here you can see an Item Pipeline which uses multiple Item Exporters to group scraped items to different files accor-
ding to the value of one of their fields:

from itemadapter import ItemAdapter
from scrapy.exporters import XmlItemExporter

class PerYearXmlExportPipeline:
"""Distribute items across multiple XML files according to their 'year' field"""

def open_spider(self, spider):
self.year_to_exporter = {}

def close_spider(self, spider):
for exporter in self.year_to_exporter.values|():
exporter.finish_exporting/()

def _exporter_for_item(self, item):
adapter = ItemAdapter (item)

(continues on next page)

250 Capitulo 6. Extending Scrapy

Scrapy Documentation, Release 2.2.0

(continued from previous page)

year = adapter['year']

if year not in self.year_to_exporter:
f = open(' .xml'.format (year), 'wb')
exporter = XmlItemExporter (f)
exporter.start_exporting()
self.year_to_exporter|[year] = exporter

return self.year_to_exporter|[year]

def process_item(self, item, spider):
exporter = self._exporter_for_item(item)
exporter.export_item(item)
return item

6.7.2 Serialization of item fields

By default, the field values are passed unmodified to the underlying serialization library, and the decision of how to
serialize them is delegated to each particular serialization library.

However, you can customize how each field value is serialized before it is passed to the serialization library.

There are two ways to customize how a field will be serialized, which are described next.

1. Declaring a serializer in the field

If you use Item you can declare a serializer in the field metadata. The serializer must be a callable which receives a
value and returns its serialized form.

Example:

import scrapy

def serialize_price(value):
return 'S ' % str(value)

class Product (scrapy.Item) :
name = scrapy.Field()
price = scrapy.Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize field () method to customize how your field value will be exported.
Make sure you call the base class serialize field () method after your custom code.

Example:

from scrapy.exporter import XmlItemExporter
class ProductXmlExporter (XmlItemExporter) :

def serialize_field(self, field, name, value):
if field == 'price':
return 'S ' % str(value)
return super (Product, self) .serialize_field(field, name, value)

6.7. Item Exporters 251

Scrapy Documentation, Release 2.2.0

6.7.3 Built-in ltem Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain output examples, which assume you’re
exporting these two items:

Item(name="Color TV', price='1200")
Item(name='DVD player', price='200")

BaseltemExporter

class scrapy.exporters.BaseItemExporter (fields_to_export=None, ex-
port_empty_fields=False, encoding="utf-8',
indent=0, dont_fail=False)
This is the (abstract) base class for all Item Exporters. It provides support for common features used by all
(concrete) Item Exporters, such as defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the __init_ method arguments which populate their respective
instance attributes: fields to_export, export_empty fields, encoding, indent.

New in version 2.0: The dont_fail parameter.

export_item (item)
Exports the given item. This method must be implemented in subclasses.

serialize_field (field, name, value)
Return the serialized value for the given field. You can override this method (in your custom Item Expor-
ters) if you want to control how a particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the value unchanged except for unicode
values which are encoded to st r using the encoding declared in the encoding attribute.

Parameters

= field (Field objectora dict instance) — the field being serialized. If the source item
object does not define field metadata, field is an empty dict.

= name (str)—the name of the field being serialized
= value - the value being serialized

start_exporting ()
Signal the beginning of the exporting process. Some exporters may use this to generate some required
header (for example, the XmI1 ItemExporter). You must call this method before exporting any items.

finish_exporting ()
Signal the end of the exporting process. Some exporters may use this to generate some required footer (for
example, the XmIItemExporter). You must always call this method after you have no more items to
export.

fields_to_export
A list with the name of the fields that will be exported, or None if you want to export all fields. Defaults
to None.

Some exporters (like CsvItemExporter) respect the order of the fields defined in this attribute.

When using item objects that do not expose all their possible fields, exporters that do not support expor-
ting a different subset of fields per item will only export the fields found in the first item exported. Use
fields_to_export to define all the fields to be exported.

252 Capitulo 6. Extending Scrapy

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

export_empty_ fields
Whether to include empty/unpopulated item fields in the exported data. Defaults to False. Some expor-
ters (like CsvItemExporter)ignore this attribute and always export all empty fields.

This option is ignored for dict items.

encoding
The encoding that will be used to encode unicode values. This only affects unicode values (which are
always serialized to str using this encoding). Other value types are passed unchanged to the specific seria-
lization library.

indent
Amount of spaces used to indent the output on each level. Defaults to 0.

» indent=None selects the most compact representation, all items in the same line with no indentation
= indent<=0 each item on its own line, no indentation

= indent>0 each item on its own line, indented with the provided numeric value

PythonltemExporter
class scrapy.exporters.PythonItemExporter (* dont_fail=False, **kwargs)
This is a base class for item exporters that extends BaseItemExporter with support for nested items.

It serializes items to built-in Python types, so that any serialization library (e.g. json or msgpack) can be used
on top of it.

XmlltemExporter

class scrapy.exporters.XmlItemExporter (file, item_element='"item', root_element='"items’,
*rkwargs)
Exports items in XML format to the specified file object.

Parameters

= file - the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

» root_element (str)— The name of root element in the exported XML.
» item element (str)— The name of each item element in the exported XML.

The additional keyword arguments of this __init___ method are passed to the BaseItemExporter
__init___ method.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
<item>
<name>Color TV</name>
<price>1200</price>
</item>
<item>
<name>DVD player</name>
<price>200</price>
</item>
</items>

6.7. Item Exporters 253

https://docs.python.org/3/library/json.html#module-json
https://pypi.org/project/msgpack/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scrapy Documentation, Release 2.2.0

Unless overridden in the serialize_field () method, multi-valued fields are exported by serializing each
value inside a <value> element. This is for convenience, as multi-valued fields are very common.

For example, the item:

Item(name=["'John', 'Doe'], age='23")

Would be serialized as:

<?xml version="1.0" encoding="utf-8"7?>
<items>
<item>
<name>
<value>John</value>
<value>Doe</value>
</name>
<age>23</age>
</item>
</items>

CsvitemExporter

class scrapy.exporters.CsvItemExporter (file, include_headers_line=True,

Join_multivalued=",", **kwargs)
Exports items in CSV format to the given file-like object. If the fields_to_export attribute is set, it will

be used to define the CSV columns and their order. The export_empty_fields attribute has no effect on
this exporter.

Parameters

= file - the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

= include_headers_line (str) — If enabled, makes the exporter output a header li-
ne with the field names taken from BaseItemExporter.fields to_export orthe
first exported item fields.

» join_multivalued — The char (or chars) that will be used for joining multi-valued
fields, if found.

The additional keyword arguments of this __init__ method are passed to the BaseItemExporter
__init__ method, and the leftover arguments to the csv.writer () function, so you can use any csv.
writer () function argument to customize this exporter.

A typical output of this exporter would be:

product, price
Color TV,1200
DVD player, 200

254 Capitulo 6. Extending Scrapy

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/csv.html#csv.writer
https://docs.python.org/3/library/csv.html#csv.writer
https://docs.python.org/3/library/csv.html#csv.writer

Scrapy Documentation, Release 2.2.0

PickleltemExporter

class scrapy.exporters.PickleItemExporter (file, protocol=0, **kwargs)
Exports items in pickle format to the given file-like object.

Parameters

= file - the file-like object to use for exporting the data. Its write method should accept
bytes (a disk file opened in binary mode, a 1o .BytesIO object, etc)

» protocol (int) - The pickle protocol to use.

For more information, see pickle.

The additional keyword arguments of this __init___ method are passed to the BaseltemExporter
__init__ method.

Pickle isn’t a human readable format, so no output examples are provided.

PprintltemExporter
class scrapy.exporters.PprintItemExporter (file, **kwargs)
Exports items in pretty print format to the specified file object.

Parameters file — the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a 10.BytesIO object, etc)

The additional keyword arguments of this __init__ method are passed to the BaseltemExporter
__init__ method.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200"}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonltemExporter

class scrapy.exporters.JsonIltemExporter (file, **kwargs)
Exports items in JSON format to the specified file-like object, writing all objects as a list of objects. The ad-
ditional __init__ method arguments are passed to the BaseItemExporter __init__ method, and the

leftover arguments to the JSONEncoder __init__ method, so you can use any JSONEncoder __init_
method argument to customize this exporter.

Parameters file — the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a 10.BytesIO object, etc)

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning: JSON is very simple and flexible serialization format, but it doesn’t scale well for large amounts
of data since incremental (aka. stream-mode) parsing is not well supported (if at all) among JSON parsers (on
any language), and most of them just parse the entire object in memory. If you want the power and simplicity

6.7. Item Exporters 255

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/json.html#json.JSONEncoder
https://docs.python.org/3/library/json.html#json.JSONEncoder

Scrapy Documentation, Release 2.2.0

of JSON with a more stream-friendly format, consider using JsonLinesItemExporter instead, or
splitting the output in multiple chunks.

JsonLinesltemExporter

class scrapy.exporters.JsonLinesItemExporter (file, **kwargs)
Exports items in JSON format to the specified file-like object, writing one JSON-encoded item per line. The
additional __init__ method arguments are passed to the BaseTtemExporter __init__ method, and the
leftover arguments to the JSONEncoder __init__ method, so you can use any JSONEncoder __init_
method argument to customize this exporter.

Parameters file — the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a 10.BytesIO object, etc)

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by this exporter is well suited for
serializing large amounts of data.

MarshalltemExporter
class scrapy.exporters.MarshalItemExporter (file, **kwargs)
Exports items in a Python-specific binary format (see marshal).

Parameters f£ile — The file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a BytesIO object, etc)

Architecture overview Understand the Scrapy architecture.

Downloader Middleware Customize how pages get requested and downloaded.
Spider Middleware Customize the input and output of your spiders.
Extensions Extend Scrapy with your custom functionality

Core API Use it on extensions and middlewares to extend Scrapy functionality
Signals See all available signals and how to work with them.

Item Exporters Quickly export your scraped items to a file (XML, CSV, etc).

256 Capitulo 6. Extending Scrapy

https://docs.python.org/3/library/json.html#json.JSONEncoder
https://docs.python.org/3/library/json.html#json.JSONEncoder
https://docs.python.org/3/library/marshal.html#module-marshal
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/io.html#io.BytesIO

CAPiTULO 7

All the rest

7.1 Release notes

7.1.1 Scrapy 2.2.0 (2020-06-24)

Highlights:
= Python 3.5.2+ is required now
» dataclass objects and attrs objects are now valid item types

» New TextResponse. json method

New bytes_received signal that allows canceling response download
» CookiesMiddleware fixes
Backward-incompatible changes

= Support for Python 3.5.0 and 3.5.1 has been dropped; Scrapy now refuses to run with a Python version lower
than 3.5.2, which introduced t yping. Type (issue 4615)

Deprecations

= TextResponse.body_as_unicode is now deprecated, use TextResponse. text instead (issue 4546,
issue 4555, issue 4579)

» scrapy.item.BaseItem is now deprecated, use scrapy.item. Iteminstead (issue 4534)

257

https://docs.python.org/3/library/typing.html#typing.Type
https://github.com/scrapy/scrapy/issues/4615
https://github.com/scrapy/scrapy/issues/4546
https://github.com/scrapy/scrapy/issues/4555
https://github.com/scrapy/scrapy/issues/4579
https://github.com/scrapy/scrapy/issues/4534

Scrapy Documentation, Release 2.2.0

New features

dataclass objects and attrs objects are now valid item types, and a new itemadapter library makes it easy to write
code that supports any item type (issue 2749, issue 2807, issue 3761, issue 3881, issue 4642)

A new TextResponse. json method allows to deserialize JSON responses (issue 2444, issue 4460, issue
4574)

A new bytes_received signal allows monitoring response download progress and stopping downloads
(issue 4205, issue 4559)

The dictionaries in the result list of a media pipeline now include a new key, status, which indicates if the
file was downloaded or, if the file was not downloaded, why it was not downloaded; see i lesPipeline.
get_media_requests for more information (issue 2893, issue 4486)

When using Google Cloud Storage for a media pipeline, a warning is now logged if the configured credentials
do not grant the required permissions (issue 4346, issue 4508)

Link extractors are now serializable, as long as you do not use lambdas for parameters; for example, you can
now pass link extractors in Request.ch_kwargs or Request .meta when persisting scheduled requests
(issue 4554)

Upgraded the pickle protocol that Scrapy uses from protocol 2 to protocol 4, improving serialization capabilities
and performance (issue 4135, issue 454 1)

scrapy.utils.misc.create_instance () now raises a TypeError exception if the resulting ins-
tance is None (issue 4528, issue 4532)

Bug fixes

CookiesMiddleware no longer discards cookies defined in Request . headers (issue 1992, issue 2400)

CookiesMiddleware no longer re-encodes cookies defined as bytes in the cookies parameter of the
__init__ method of Request (issue 2400, issue 3575)

When FEEDS defines multiple URIs, FEED_STORE_EMPTY is False and the crawl yields no items, Scrapy
no longer stops feed exports after the first URI (issue 4621, issue 4626)

Spider callbacks defined using coroutine syntax no longer need to return an iterable, and may instead return a
Request object, an item, or None (issue 4609)

The startproject command now ensures that the generated project folders and files have the right permis-
sions (issue 4604)

Fix a KeyError exception being sometimes raised from scrapy.utils.datatypes.
LocalWeakReferencedCache (issue 4597, issue 4599)

When FEEDS defines multiple URIs, log messages about items being stored now contain information from the
corresponding feed, instead of always containing information about only one of the feeds (issue 4619, issue
4629)

258

Capitulo 7. All the rest

https://github.com/scrapy/itemadapter
https://github.com/scrapy/scrapy/issues/2749
https://github.com/scrapy/scrapy/issues/2807
https://github.com/scrapy/scrapy/issues/3761
https://github.com/scrapy/scrapy/issues/3881
https://github.com/scrapy/scrapy/issues/4642
https://github.com/scrapy/scrapy/issues/2444
https://github.com/scrapy/scrapy/issues/4460
https://github.com/scrapy/scrapy/issues/4574
https://github.com/scrapy/scrapy/issues/4574
https://github.com/scrapy/scrapy/issues/4205
https://github.com/scrapy/scrapy/issues/4559
https://github.com/scrapy/scrapy/issues/2893
https://github.com/scrapy/scrapy/issues/4486
https://github.com/scrapy/scrapy/issues/4346
https://github.com/scrapy/scrapy/issues/4508
https://docs.python.org/3/reference/expressions.html#lambda
https://github.com/scrapy/scrapy/issues/4554
https://docs.python.org/3/library/pickle.html#pickle-protocols
https://github.com/scrapy/scrapy/issues/4135
https://github.com/scrapy/scrapy/issues/4541
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/scrapy/scrapy/issues/4528
https://github.com/scrapy/scrapy/issues/4532
https://github.com/scrapy/scrapy/issues/1992
https://github.com/scrapy/scrapy/issues/2400
https://docs.python.org/3/library/stdtypes.html#bytes
https://github.com/scrapy/scrapy/issues/2400
https://github.com/scrapy/scrapy/issues/3575
https://github.com/scrapy/scrapy/issues/4621
https://github.com/scrapy/scrapy/issues/4626
https://github.com/scrapy/scrapy/issues/4609
https://github.com/scrapy/scrapy/issues/4604
https://docs.python.org/3/library/exceptions.html#KeyError
https://github.com/scrapy/scrapy/issues/4597
https://github.com/scrapy/scrapy/issues/4599
https://github.com/scrapy/scrapy/issues/4619
https://github.com/scrapy/scrapy/issues/4629
https://github.com/scrapy/scrapy/issues/4629

Scrapy Documentation, Release 2.2.0

Documentation

» Added a new section about accessing cb_kwargs from errbacks (issue 4598, issue 4634)

= Covered chompjs in Parsing JavaScript code (issue 4556, issue 4562)

= Removed from Coroutines the warning about the API being experimental (issue 4511, issue 4513)
= Removed references to unsupported versions of Twisted (issue 4533)

» Updated the description of the screenshot pipeline example, which now uses coroutine syntax instead of retur-
ning a Deferred (issue 4514, issue 4593)

= Removed a misleading import line from the scrapy.utils.log.configure _logging () code exam-
ple (issue 4510, issue 4587)

= The display-on-hover behavior of internal documentation references now also covers links to commands,
Request .meta keys, settings and signals (issue 4495, issue 4563)

=]t is again possible to download the documentation for offline reading (issue 4578, issue 4585)

= Removed backslashes preceding xargs and » xkwargs in some function and method signatures (issue 4592,
issue 4596)

Quality assurance
= Adjusted the code base further to our style guidelines (issue 4237, issue 4525, issue 4538, issue 4539, issue 4540,
issue 4542, issue 4543, issue 4544, issue 4545, issue 4557, issue 4558, issue 4566, issue 4568, issue 4572)
= Removed remnants of Python 2 support (issue 4550, issue 4553, issue 4568)
= Improved code sharing between the crawl and runspider commands (issue 4548, issue 4552)
= Replaced chain (xiterable) withchain.from_iterable (iterable) (issue 4635)
= You may now run the asyncio tests with Tox on any Python version (issue 4521)
= Updated test requirements to reflect an incompatibility with pytest 5.4 and 5.4.1 (issue 4588)

» Improved SpiderLoader test coverage for scenarios involving duplicate spider names (issue 4549, issue
4560)

= Configured Travis CI to also run the tests with Python 3.5.2 (issue 4518, issue 4615)
= Added a Pylint job to Travis CI (issue 3727)
= Added a Mypy job to Travis CI (issue 4637)
= Made use of set literals in tests (issue 4573)

= Cleaned up the Travis CI configuration (issue 4517, issue 4519, issue 4522, issue 4537)

7.1.2 Scrapy 2.1.0 (2020-04-24)

Highlights:
= New FEEDS setting to export to multiple feeds

» New Response.ip_address attribute

7.1. Release notes 259

https://github.com/scrapy/scrapy/issues/4598
https://github.com/scrapy/scrapy/issues/4634
https://github.com/Nykakin/chompjs
https://github.com/scrapy/scrapy/issues/4556
https://github.com/scrapy/scrapy/issues/4562
https://github.com/scrapy/scrapy/issues/4511
https://github.com/scrapy/scrapy/issues/4513
https://twistedmatrix.com/documents/current/index.html
https://github.com/scrapy/scrapy/issues/4533
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://github.com/scrapy/scrapy/issues/4514
https://github.com/scrapy/scrapy/issues/4593
https://github.com/scrapy/scrapy/issues/4510
https://github.com/scrapy/scrapy/issues/4587
https://github.com/scrapy/scrapy/issues/4495
https://github.com/scrapy/scrapy/issues/4563
https://github.com/scrapy/scrapy/issues/4578
https://github.com/scrapy/scrapy/issues/4585
https://github.com/scrapy/scrapy/issues/4592
https://github.com/scrapy/scrapy/issues/4596
https://github.com/scrapy/scrapy/issues/4237
https://github.com/scrapy/scrapy/issues/4525
https://github.com/scrapy/scrapy/issues/4538
https://github.com/scrapy/scrapy/issues/4539
https://github.com/scrapy/scrapy/issues/4540
https://github.com/scrapy/scrapy/issues/4542
https://github.com/scrapy/scrapy/issues/4543
https://github.com/scrapy/scrapy/issues/4544
https://github.com/scrapy/scrapy/issues/4545
https://github.com/scrapy/scrapy/issues/4557
https://github.com/scrapy/scrapy/issues/4558
https://github.com/scrapy/scrapy/issues/4566
https://github.com/scrapy/scrapy/issues/4568
https://github.com/scrapy/scrapy/issues/4572
https://github.com/scrapy/scrapy/issues/4550
https://github.com/scrapy/scrapy/issues/4553
https://github.com/scrapy/scrapy/issues/4568
https://github.com/scrapy/scrapy/issues/4548
https://github.com/scrapy/scrapy/issues/4552
https://github.com/scrapy/scrapy/issues/4635
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://github.com/scrapy/scrapy/issues/4521
https://github.com/scrapy/scrapy/issues/4588
https://github.com/scrapy/scrapy/issues/4549
https://github.com/scrapy/scrapy/issues/4560
https://github.com/scrapy/scrapy/issues/4560
https://github.com/scrapy/scrapy/issues/4518
https://github.com/scrapy/scrapy/issues/4615
https://www.pylint.org/
https://github.com/scrapy/scrapy/issues/3727
http://mypy-lang.org/
https://github.com/scrapy/scrapy/issues/4637
https://github.com/scrapy/scrapy/issues/4573
https://github.com/scrapy/scrapy/issues/4517
https://github.com/scrapy/scrapy/issues/4519
https://github.com/scrapy/scrapy/issues/4522
https://github.com/scrapy/scrapy/issues/4537

Scrapy Documentation, Release 2.2.0

Backward-incompatible changes

AssertionError exceptions triggered by assert statements have been replaced by new exception types, to
support running Python in optimized mode (see —0) without changing Scrapy’s behavior in any unexpected
ways.

If you catch an AssertionError exception from Scrapy, update your code to catch the corresponding new
exception.

(issue 4440)

Deprecation removals

The LOG_UNSERIALIZABLE_REQUESTS setting is no longer supported, use SCHEDULER_DEBUG instead
(issue 4385)

The REDIRECT MAX_ METAREFRESH DELAY setting is no longer supported, use
METAREFRESH MAXDELAY instead (issue 4385)

The ChunkedTransferMiddleware middleware has been removed, including the entire scrapy.
downloadermiddlewares.chunked module; chunked transfers work out of the box (issue 4431)

The spiders property has been removed from Crawler, use CrawlerRunner.spider_ loader or
instantiate SPTDER_LOADER_CLASS with your settings instead (issue 4398)

The MultivalueDict, MultiValueDictKeyError, and SiteNode classes have been removed from
scrapy.utils.datatypes (issue 4400)

Deprecations

The FEED_FORMAT and FEED_URT settings have been deprecated in favor of the new FEEDS setting (issue
1336, issue 3858, issue 4507)

New features

A new setting, FEEDS, allows configuring multiple output feeds with different settings each (issue 1336, issue
3858, issue 4507)

The crawl and runspider commands now support multiple —o parameters (issue 1336, issue 3858, issue
4507)

The crawl and runspider commands now support specifying an output format by appending : <format >
to the output file (issue 1336, issue 3858, issue 4507)

The new Response. ip_address attribute gives access to the IP address that originated a response (issue
3903, issue 3940)

A warning is now issued when a value in allowed domains includes a port (issue 50, issue 3198, issue
4413)

Zsh completion now excludes used option aliases from the completion list (issue 4438)

260

Capitulo 7. All the rest

https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/reference/simple_stmts.html#assert
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/library/exceptions.html#AssertionError
https://github.com/scrapy/scrapy/issues/4440
https://github.com/scrapy/scrapy/issues/4385
https://github.com/scrapy/scrapy/issues/4385
https://github.com/scrapy/scrapy/issues/4431
https://github.com/scrapy/scrapy/issues/4398
https://github.com/scrapy/scrapy/issues/4400
https://github.com/scrapy/scrapy/issues/1336
https://github.com/scrapy/scrapy/issues/1336
https://github.com/scrapy/scrapy/issues/3858
https://github.com/scrapy/scrapy/issues/4507
https://github.com/scrapy/scrapy/issues/1336
https://github.com/scrapy/scrapy/issues/3858
https://github.com/scrapy/scrapy/issues/3858
https://github.com/scrapy/scrapy/issues/4507
https://github.com/scrapy/scrapy/issues/1336
https://github.com/scrapy/scrapy/issues/3858
https://github.com/scrapy/scrapy/issues/4507
https://github.com/scrapy/scrapy/issues/4507
https://github.com/scrapy/scrapy/issues/1336
https://github.com/scrapy/scrapy/issues/3858
https://github.com/scrapy/scrapy/issues/4507
https://github.com/scrapy/scrapy/issues/3903
https://github.com/scrapy/scrapy/issues/3903
https://github.com/scrapy/scrapy/issues/3940
https://github.com/scrapy/scrapy/issues/50
https://github.com/scrapy/scrapy/issues/3198
https://github.com/scrapy/scrapy/issues/4413
https://github.com/scrapy/scrapy/issues/4413
https://github.com/scrapy/scrapy/issues/4438

Scrapy Documentation, Release 2.2.0

Bug fixes
» Request serialization no longer breaks for callbacks that are spider attributes which are assigned a function with
a different name (issue 4500)
= None values in allowed_domains no longer cause a TypeError exception (issue 4410)
= Zsh completion no longer allows options after arguments (issue 4438)
= zope.interface 5.0.0 and later versions are now supported (issue 4447, issue 4448)

= Spider.make_requests_~from_url, deprecated in Scrapy 1.4.0, now issues a warning when used (issue
4412)

Documentation
= Improved the documentation about signals that allow their handlers to return a De ferred (issue 4295, issue
4390)

= Our PyPI entry now includes links for our documentation, our source code repository and our issue tracker (issue
4456)

= Covered the curl2scrapy service in the documentation (issue 4200, issue 4455)

= Removed references to the Guppy library, which only works in Python 2 (issue 4285, issue 4343)
= Extended use of InterSphinx to link to Python 3 documentation (issue 4444, issue 4445)

» Added support for Sphinx 3.0 and later (issue 4475, issue 4480, issue 4496, issue 4503)

Quality assurance

= Removed warnings about using old, removed settings (issue 4404)

= Removed a warning about importing StringTransport from twisted.test.proto_helpers in
Twisted 19.7.0 or newer (issue 4409)

= Removed outdated Debian package build files (issue 4384)

= Removed ob ject usage as a base class (issue 4430)

= Removed code that added support for old versions of Twisted that we no longer support (issue 4472)
= Fixed code style issues (issue 4468, issue 4469, issue 4471, issue 4481)

s Removed twisted.internet.defer.returnValue () calls (issue 4443, issue 4446, issue 4489)

7.1.3 Scrapy 2.0.1 (2020-03-18)

» Response.follow_allnow supports an empty URL iterable as input (issue 4408, issue 4420)

= Removed top-level reactor imports to prevent errors about the wrong Twisted reactor being installed when
setting a different Twisted reactor using TWISTED_REACTOR (issue 4401, issue 4406)

= Fixed tests (issue 4422)

7.1. Release notes 261

https://github.com/scrapy/scrapy/issues/4500
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/scrapy/scrapy/issues/4410
https://github.com/scrapy/scrapy/issues/4438
https://github.com/scrapy/scrapy/issues/4447
https://github.com/scrapy/scrapy/issues/4448
https://github.com/scrapy/scrapy/issues/4412
https://github.com/scrapy/scrapy/issues/4412
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://github.com/scrapy/scrapy/issues/4295
https://github.com/scrapy/scrapy/issues/4390
https://github.com/scrapy/scrapy/issues/4390
https://github.com/scrapy/scrapy/issues/4456
https://github.com/scrapy/scrapy/issues/4456
https://michael-shub.github.io/curl2scrapy/
https://github.com/scrapy/scrapy/issues/4206
https://github.com/scrapy/scrapy/issues/4455
https://github.com/scrapy/scrapy/issues/4285
https://github.com/scrapy/scrapy/issues/4343
https://github.com/scrapy/scrapy/issues/4444
https://github.com/scrapy/scrapy/issues/4445
https://github.com/scrapy/scrapy/issues/4475
https://github.com/scrapy/scrapy/issues/4480
https://github.com/scrapy/scrapy/issues/4496
https://github.com/scrapy/scrapy/issues/4503
https://github.com/scrapy/scrapy/issues/4404
https://twistedmatrix.com/documents/current/api/twisted.internet.testing.StringTransport.html
https://github.com/scrapy/scrapy/issues/4409
https://github.com/scrapy/scrapy/issues/4384
https://docs.python.org/3/library/functions.html#object
https://github.com/scrapy/scrapy/issues/4430
https://github.com/scrapy/scrapy/issues/4472
https://github.com/scrapy/scrapy/issues/4468
https://github.com/scrapy/scrapy/issues/4469
https://github.com/scrapy/scrapy/issues/4471
https://github.com/scrapy/scrapy/issues/4481
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.html#returnValue
https://github.com/scrapy/scrapy/issues/4443
https://github.com/scrapy/scrapy/issues/4446
https://github.com/scrapy/scrapy/issues/4489
https://github.com/scrapy/scrapy/issues/4408
https://github.com/scrapy/scrapy/issues/4420
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://github.com/scrapy/scrapy/issues/4401
https://github.com/scrapy/scrapy/issues/4406
https://github.com/scrapy/scrapy/issues/4422

Scrapy Documentation, Release 2.2.0

7.1.4 Scrapy 2.0.0 (2020-03-03)

Highlights:

Python 2 support has been removed

Partial coroutine syntax support and experimental asyncio support
New Response. follow_all method

FTP support for media pipelines

New Response.certificate attribute

IPv6 support through DNS_RESOLVER

Backward-incompatible changes

Python 2 support has been removed, following Python 2 end-of-life on January 1, 2020 (issue 4091, issue 4114,
issue 4115, issue 4121, issue 4138, issue 4231, issue 4242, issue 4304, issue 4309, issue 4373)

Retry gaveups (see RETRY_TIMES) are now logged as errors instead of as debug information (issue 3171, issue
3566)

File extensions that LinkExt ractor ignores by default now also include 7z, 7zip, apk, bz2, cdr, dmg,
ico, iso, tar, tar.gz, webm, and xz (issue 1837, issue 2067, issue 4066)

The METAREFRESH_IGNORE_TAGS setting is now an empty list by default, following web browser behavior
(issue 3844, issue 4311)

The HttpCompressionMiddleware now includes spaces after commas in the value of the
Accept-Encoding header that it sets, following web browser behavior (issue 4293)

The ___init__ method of custom download handlers (see DOWNLOAD HANDLERS) or subclasses of the fo-
llowing downloader handlers no longer receives a sett ings parameter:

e scrapy.core.downloader.handlers.datauri.DataURIDownloadHandler
* scrapy.core.downloader.handlers.file.FileDownloadHandler

Use the from_settings or from_crawler class methods to expose such a parameter to your custom
download handlers.

(issue 4126)

We have refactored the scrapy.core.scheduler.Scheduler class and related queue classes (see
SCHEDULER_PRIORITY QUEUE, SCHEDULER DISK_ QUEUE and SCHEDULER_MEMORY_ QUEUE) to
make it easier to implement custom scheduler queue classes. See Changes to scheduler queue classes below
for details.

Overridden settings are now logged in a different format. This is more in line with similar information logged at
startup (issue 4199)

262

Capitulo 7. All the rest

https://docs.python.org/3/reference/compound_stmts.html#async
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://www.python.org/doc/sunset-python-2/
https://github.com/scrapy/scrapy/issues/4091
https://github.com/scrapy/scrapy/issues/4114
https://github.com/scrapy/scrapy/issues/4115
https://github.com/scrapy/scrapy/issues/4121
https://github.com/scrapy/scrapy/issues/4138
https://github.com/scrapy/scrapy/issues/4231
https://github.com/scrapy/scrapy/issues/4242
https://github.com/scrapy/scrapy/issues/4304
https://github.com/scrapy/scrapy/issues/4309
https://github.com/scrapy/scrapy/issues/4373
https://github.com/scrapy/scrapy/issues/3171
https://github.com/scrapy/scrapy/issues/3566
https://github.com/scrapy/scrapy/issues/3566
https://github.com/scrapy/scrapy/issues/1837
https://github.com/scrapy/scrapy/issues/2067
https://github.com/scrapy/scrapy/issues/4066
https://github.com/scrapy/scrapy/issues/3844
https://github.com/scrapy/scrapy/issues/4311
https://github.com/scrapy/scrapy/issues/4293
https://github.com/scrapy/scrapy/issues/4126
https://github.com/scrapy/scrapy/issues/4199

Scrapy Documentation, Release 2.2.0

Deprecation removals

The Scrapy shell no longer provides a sel proxy object, use response.selector instead (issue 4347)
LevelDB support has been removed (issue 4112)

The following functions have been removed from scrapy.utils.python: isbinarytext,
is_writable, setattr_default, stringify_dict (issue 4362)

Deprecations

New

Using environment variables prefixed with SCRAPY_ to override settings is deprecated (issue 4300, issue 4374,
issue 4375)

scrapy.linkextractors.FilteringLinkExtractor is deprecated, use scrapy.
linkextractors.LinkExtractor instead (issue 4045)

The noconnect query string argument of proxy URLSs is deprecated and should be removed from proxy URLs
(issue 4198)

The next method of scrapy.utils.python.MutableChain is deprecated, use the global next ()
function or MutableChain._ next_ instead (issue 4153)

features
Added partial support for Python’s coroutine syntax and experimental support for asyncio and asyncio-
powered libraries (issue 4010, issue 4259, issue 4269, issue 4270, issue 4271, issue 4316, issue 4318)

The new Response. follow_all method offers the same functionality as Response. follow but sup-
ports an iterable of URLs as input and returns an iterable of requests (issue 2582, issue 4057, issue 4286)

Media pipelines now support FTP storage (issue 3928, issue 3961)

The new Response.certificate attribute exposes the SSL certificate of the server as a twisted.
internet.ssl.Certificate object for HTTPS responses (issue 2726, issue 4054)

A new DNS_RESOLVER setting allows enabling IPv6 support (issue 1031, issue 4227)

A new SCRAPER_SLOT_MAX_ACTIVE_SIZE setting allows configuring the existing soft limit that pauses
request downloads when the total response data being processed is too high (issue 1410, issue 3551)

A new TWISTED REACTOR setting allows customizing the reactor that Scrapy uses, allowing to enable
asyncio support or deal with a common macOS issue (issue 2905, issue 4294)

Scheduler disk and memory queues may now use the class methods from_crawler or from_settings
(issue 3884)

The new Response.cb_kwargs attribute serves as a shortcut for Response. request.chb_kwargs
(issue 4331)

Response. follow now supports a £lags parameter, for consistency with Request (issue 4277, issue
4279)

Item loader processors can now be regular functions, they no longer need to be methods (issue 3899)
Rule now accepts an errback parameter (issue 4000)

Reguest no longer requires a callback parameter when an errback parameter is specified (issue 3586,
issue 4008)

LogFormatter now supports some additional methods:

7.1.

Release notes 263

https://github.com/scrapy/scrapy/issues/4347
https://github.com/scrapy/scrapy/issues/4112
https://github.com/scrapy/scrapy/issues/4362
https://github.com/scrapy/scrapy/issues/4300
https://github.com/scrapy/scrapy/issues/4374
https://github.com/scrapy/scrapy/issues/4375
https://github.com/scrapy/scrapy/issues/4045
https://github.com/scrapy/scrapy/issues/4198
https://docs.python.org/3/library/functions.html#next
https://github.com/scrapy/scrapy/issues/4153
https://docs.python.org/3/reference/compound_stmts.html#async
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://github.com/scrapy/scrapy/issues/4010
https://github.com/scrapy/scrapy/issues/4259
https://github.com/scrapy/scrapy/issues/4269
https://github.com/scrapy/scrapy/issues/4270
https://github.com/scrapy/scrapy/issues/4271
https://github.com/scrapy/scrapy/issues/4316
https://github.com/scrapy/scrapy/issues/4318
https://github.com/scrapy/scrapy/issues/2582
https://github.com/scrapy/scrapy/issues/4057
https://github.com/scrapy/scrapy/issues/4286
https://github.com/scrapy/scrapy/issues/3928
https://github.com/scrapy/scrapy/issues/3961
https://twistedmatrix.com/documents/current/api/twisted.internet.ssl.Certificate.html
https://twistedmatrix.com/documents/current/api/twisted.internet.ssl.Certificate.html
https://github.com/scrapy/scrapy/issues/2726
https://github.com/scrapy/scrapy/issues/4054
https://github.com/scrapy/scrapy/issues/1031
https://github.com/scrapy/scrapy/issues/4227
https://github.com/scrapy/scrapy/issues/1410
https://github.com/scrapy/scrapy/issues/3551
https://twistedmatrix.com/documents/current/api/twisted.internet.reactor.html
https://github.com/scrapy/scrapy/issues/2905
https://github.com/scrapy/scrapy/issues/4294
https://github.com/scrapy/scrapy/issues/3884
https://github.com/scrapy/scrapy/issues/4331
https://github.com/scrapy/scrapy/issues/4277
https://github.com/scrapy/scrapy/issues/4279
https://github.com/scrapy/scrapy/issues/4279
https://github.com/scrapy/scrapy/issues/3899
https://github.com/scrapy/scrapy/issues/4000
https://github.com/scrapy/scrapy/issues/3586
https://github.com/scrapy/scrapy/issues/4008

Scrapy Documentation, Release 2.2.0

e download error for download errors
e item_error for exceptions raised during item processing by item pipelines
* spider_error for exceptions raised from spider callbacks
(issue 374, issue 3986, issue 3989, issue 4176, issue 4188)
The FEED_URT setting now supports pathlib.Path values (issue 3731, issue 4074)
A new request_left_downloader signal is sent when a request leaves the downloader (issue 4303)

Scrapy logs a warning when it detects a request callback or errback that uses yield but also returns a value,
since the returned value would be lost (issue 3484, issue 3869)

Spider objects now raise an AttributeError exception if they do not have a start_urls attribute nor
reimplement start_requests, buthave a start_url attribute (issue 4133, issue 4170)

BaselItemExporter subclasses may now use super () .__init__ (xxkwargs) instead of self.
_configure (kwargs) intheir__init__ method, passing dont_fail=True tothe parent __init_
method if needed, and accessing kwargs at self._kwargs after calling their parent __init__ method
(issue 4193, issue 4370)

A new keep_fragments parameter of scrapy.utils.request.request_fingerprint ()
allows to generate different fingerprints for requests with different fragments in their URL (issue 4104)

Download handlers (see DOWNLOAD_HANDLERS) may now use the from_settingsand from_crawler
class methods that other Scrapy components already supported (issue 4126)

scrapy.utils.python.MutableChain.__iter__ now returns self, allowing it to be used as a
sequence (issue 4153)

Bug fixes

The crawl command now also exits with exit code 1 when an exception happens before the crawling starts
(issue 4175, issue 4207)

LinkExtractor.extract_1links no longer re-encodes the query string or URLs from non-UTF-8 res-
ponses in UTF-8 (issue 998, issue 1403, issue 1949, issue 4321)

The first spider middleware (see SPTDER_MIDDLEWARES) now also processes exceptions raised from call-
backs that are generators (issue 4260, issue 4272)

Redirects to URLSs starting with 3 slashes (// /) are now supported (issue 4032, issue 4042)
Reqguest no longer accepts strings as ur 1 simply because they have a colon (issue 2552, issue 4094)
The correct encoding is now used for attach names in Mai I Sender (issue 4229, issue 4239)

RFPDupeFilter, the default DUPEFILTER CLASS, no longer writes an extra \ r character on each line in
Windows, which made the size of the requests. seen file unnecessarily large on that platform (issue 4283)

Z shell auto-completion now looks for . html files, not . http files, and covers the —h command-line switch
(issue 4122, issue 4291)

Adding items to a scrapy.utils.datatypes.LocalCache object without a 1imit defined no longer
raises a TypeError exception (issue 4123)

Fixed a typo in the message of the ValueError exception raised when scrapy.utils.misc.
create_instance () gets both settings and crawler set to None (issue 4128)

264

Capitulo 7. All the rest

https://github.com/scrapy/scrapy/issues/374
https://github.com/scrapy/scrapy/issues/3986
https://github.com/scrapy/scrapy/issues/3989
https://github.com/scrapy/scrapy/issues/4176
https://github.com/scrapy/scrapy/issues/4188
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/scrapy/scrapy/issues/3731
https://github.com/scrapy/scrapy/issues/4074
https://github.com/scrapy/scrapy/issues/4303
https://github.com/scrapy/scrapy/issues/3484
https://github.com/scrapy/scrapy/issues/3869
https://docs.python.org/3/library/exceptions.html#AttributeError
https://github.com/scrapy/scrapy/issues/4133
https://github.com/scrapy/scrapy/issues/4170
https://github.com/scrapy/scrapy/issues/4193
https://github.com/scrapy/scrapy/issues/4370
https://github.com/scrapy/scrapy/issues/4104
https://github.com/scrapy/scrapy/issues/4126
https://lgtm.com/rules/4850080/
https://lgtm.com/rules/4850080/
https://github.com/scrapy/scrapy/issues/4153
https://github.com/scrapy/scrapy/issues/4175
https://github.com/scrapy/scrapy/issues/4207
https://github.com/scrapy/scrapy/issues/998
https://github.com/scrapy/scrapy/issues/1403
https://github.com/scrapy/scrapy/issues/1949
https://github.com/scrapy/scrapy/issues/4321
https://github.com/scrapy/scrapy/issues/4260
https://github.com/scrapy/scrapy/issues/4272
https://github.com/scrapy/scrapy/issues/4032
https://github.com/scrapy/scrapy/issues/4042
https://github.com/scrapy/scrapy/issues/2552
https://github.com/scrapy/scrapy/issues/4094
https://github.com/scrapy/scrapy/issues/4229
https://github.com/scrapy/scrapy/issues/4239
https://github.com/scrapy/scrapy/issues/4283
https://github.com/scrapy/scrapy/issues/4122
https://github.com/scrapy/scrapy/issues/4291
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/scrapy/scrapy/issues/4123
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/scrapy/scrapy/issues/4128

Scrapy Documentation, Release 2.2.0

Documentation

API documentation now links to an online, syntax-highlighted view of the corresponding source code (issue
4148)

Links to unexisting documentation pages now allow access to the sidebar (issue 4152, issue 4169)
Cross-references within our documentation now display a tooltip when hovered (issue 4173, issue 4183)

Improved the documentation about LinkExtractor.extract_1inks and simplified Link Extractors (is-
sue 4045)

Clarified how TtemlLoader. item works (issue 3574, issue 4099)

Clarified that 1ogging.basicConfig () should not be used when also using CrawlerProcess (issue
2149, issue 2352, issue 3146, issue 3960)

Clarified the requirements for Request objects when using persistence (issue 4124, issue 4139)
Clarified how to install a custom image pipeline (issue 4034, issue 4252)
Fixed the signatures of the £ile_path method in media pipeline examples (issue 4290)

Covered a backward-incompatible change in Scrapy 1.7.0 affecting custom scrapy.core.scheduler.
Scheduler subclasses (issue 4274)

Improved the README . rst and CODE_OF_CONDUCT . md files (issue 4059)

Documentation examples are now checked as part of our test suite and we have fixed some of the issues detected
(issue 4142, issue 4146, issue 4171, issue 4184, issue 4190)

Fixed logic issues, broken links and typos (issue 4247, issue 4258, issue 4282, issue 4288, issue 4305, issue
4308, issue 4323, issue 4338, issue 4359, issue 4361)

Improved consistency when referring to the __init__ method of an object (issue 4086, issue 4088)
Fixed an inconsistency between code and output in Scrapy at a glance (issue 4213)

Extended intersphinx usage (issue 4147, issue 4172, issue 4185, issue 4194, issue 4197)

We now use a recent version of Python to build the documentation (issue 4140, issue 4249)

Cleaned up documentation (issue 4143, issue 4275)

Quality assurance

Re-enabled proxy CONNECT tests (issue 2545, issue 4114)
Added Bandit security checks to our test suite (issue 4162, issue 4181)

Added Flake8 style checks to our test suite and applied many of the corresponding changes (issue 3944, issue
3945, issue 4137, issue 4157, issue 4167, issue 4174, issue 4186, issue 4195, issue 4238, issue 4246, issue 4355,
issue 4360, issue 4365)

Improved test coverage (issue 4097, issue 4218, issue 4236)
Started reporting slowest tests, and improved the performance of some of them (issue 4163, issue 4164)
Fixed broken tests and refactored some tests (issue 4014, issue 4095, issue 4244, issue 4268, issue 4372)

Modified the tox configuration to allow running tests with any Python version, run Bandit and Flake8 tests by
default, and enforce a minimum tox version programmatically (issue 4179)

Cleaned up code (issue 3937, issue 4208, issue 4209, issue 4210, issue 4212, issue 4369, issue 4376, issue 4378)

7.1.

Release notes 265

https://github.com/scrapy/scrapy/issues/4148
https://github.com/scrapy/scrapy/issues/4148
https://github.com/scrapy/scrapy/issues/4152
https://github.com/scrapy/scrapy/issues/4169
https://github.com/scrapy/scrapy/issues/4173
https://github.com/scrapy/scrapy/issues/4183
https://github.com/scrapy/scrapy/issues/4045
https://github.com/scrapy/scrapy/issues/4045
https://github.com/scrapy/scrapy/issues/3574
https://github.com/scrapy/scrapy/issues/4099
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://github.com/scrapy/scrapy/issues/2149
https://github.com/scrapy/scrapy/issues/2149
https://github.com/scrapy/scrapy/issues/2352
https://github.com/scrapy/scrapy/issues/3146
https://github.com/scrapy/scrapy/issues/3960
https://github.com/scrapy/scrapy/issues/4124
https://github.com/scrapy/scrapy/issues/4139
https://github.com/scrapy/scrapy/issues/4034
https://github.com/scrapy/scrapy/issues/4252
https://github.com/scrapy/scrapy/issues/4290
https://github.com/scrapy/scrapy/issues/4274
https://github.com/scrapy/scrapy/issues/4059
https://github.com/scrapy/scrapy/issues/4142
https://github.com/scrapy/scrapy/issues/4146
https://github.com/scrapy/scrapy/issues/4171
https://github.com/scrapy/scrapy/issues/4184
https://github.com/scrapy/scrapy/issues/4190
https://github.com/scrapy/scrapy/issues/4247
https://github.com/scrapy/scrapy/issues/4258
https://github.com/scrapy/scrapy/issues/4282
https://github.com/scrapy/scrapy/issues/4288
https://github.com/scrapy/scrapy/issues/4305
https://github.com/scrapy/scrapy/issues/4308
https://github.com/scrapy/scrapy/issues/4308
https://github.com/scrapy/scrapy/issues/4323
https://github.com/scrapy/scrapy/issues/4338
https://github.com/scrapy/scrapy/issues/4359
https://github.com/scrapy/scrapy/issues/4361
https://github.com/scrapy/scrapy/issues/4086
https://github.com/scrapy/scrapy/issues/4088
https://github.com/scrapy/scrapy/issues/4213
https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html#module-sphinx.ext.intersphinx
https://github.com/scrapy/scrapy/issues/4147
https://github.com/scrapy/scrapy/issues/4172
https://github.com/scrapy/scrapy/issues/4185
https://github.com/scrapy/scrapy/issues/4194
https://github.com/scrapy/scrapy/issues/4197
https://github.com/scrapy/scrapy/issues/4140
https://github.com/scrapy/scrapy/issues/4249
https://github.com/scrapy/scrapy/issues/4143
https://github.com/scrapy/scrapy/issues/4275
https://github.com/scrapy/scrapy/issues/2545
https://github.com/scrapy/scrapy/issues/4114
https://bandit.readthedocs.io/
https://github.com/scrapy/scrapy/issues/4162
https://github.com/scrapy/scrapy/issues/4181
https://flake8.pycqa.org/en/latest/
https://github.com/scrapy/scrapy/issues/3944
https://github.com/scrapy/scrapy/issues/3945
https://github.com/scrapy/scrapy/issues/3945
https://github.com/scrapy/scrapy/issues/4137
https://github.com/scrapy/scrapy/issues/4157
https://github.com/scrapy/scrapy/issues/4167
https://github.com/scrapy/scrapy/issues/4174
https://github.com/scrapy/scrapy/issues/4186
https://github.com/scrapy/scrapy/issues/4195
https://github.com/scrapy/scrapy/issues/4238
https://github.com/scrapy/scrapy/issues/4246
https://github.com/scrapy/scrapy/issues/4355
https://github.com/scrapy/scrapy/issues/4360
https://github.com/scrapy/scrapy/issues/4365
https://github.com/scrapy/scrapy/issues/4097
https://github.com/scrapy/scrapy/issues/4218
https://github.com/scrapy/scrapy/issues/4236
https://github.com/scrapy/scrapy/issues/4163
https://github.com/scrapy/scrapy/issues/4164
https://github.com/scrapy/scrapy/issues/4014
https://github.com/scrapy/scrapy/issues/4095
https://github.com/scrapy/scrapy/issues/4244
https://github.com/scrapy/scrapy/issues/4268
https://github.com/scrapy/scrapy/issues/4372
https://tox.readthedocs.io/en/latest/index.html
https://bandit.readthedocs.io/
https://flake8.pycqa.org/en/latest/
https://github.com/scrapy/scrapy/issues/4179
https://github.com/scrapy/scrapy/issues/3937
https://github.com/scrapy/scrapy/issues/4208
https://github.com/scrapy/scrapy/issues/4209
https://github.com/scrapy/scrapy/issues/4210
https://github.com/scrapy/scrapy/issues/4212
https://github.com/scrapy/scrapy/issues/4369
https://github.com/scrapy/scrapy/issues/4376
https://github.com/scrapy/scrapy/issues/4378

Scrapy Documentation, Release 2.2.0

Changes to scheduler queue classes

The following changes may impact any custom queue classes of all types:

= The push method no longer receives a second positional parameter containing request.priority =
—1. If you need that value, get it from the first positional parameter, request, instead, or use the new
priority () methodin scrapy.core.scheduler.ScrapyPriorityQueue subclasses.

The following changes may impact custom priority queue classes:
» Inthe ___init__ method or the from_crawler or from_settings class methods:

» The parameter that used to contain a factory function, gfactory, is now passed as a keyword parameter
named downstream_queue_cls.

* A new keyword parameter has been added: key. It is a string that is always an empty string for memory
queues and indicates the JOB_D1IR value for disk queues.

e The parameter for disk queues that contains data from the previous crawl, startprios or
slot_startprios,is now passed as a keyword parameter named startprios.

e The serialize parameter is no longer passed. The disk queue class must take care of request serializa-
tion on its own before writing to disk, using the request_to_dict () and request_from_dict ()
functions from the scrapy.utils.regser module.

The following changes may impact custom disk and memory queue classes:
» The signature of the __init___ methodisnow __init__ (self, crawler, key).

The following changes affect specifically the ScrapyPriorityQueue and
DownloaderAwarePriorityQueue classes from scrapy.core.scheduler and may affect subclas-
ses:

» Inthe __init__ method, most of the changes described above apply.
_ init__ may still receive all parameters as positional parameters, however:
e downstream_queue_cls, which replaced gfactory, must be instantiated differently.
gfactory was instantiated with a priority value (integer).

Instances of downstream_gqueue_c1ls should be created using the new ScrapyPriorityQueue.
gfactory or DownloaderAwarePriorityQueue.pgfactory methods.

* The new key parameter displaced the startprios parameter 1 position to the right.
= The following class attributes have been added:
* crawler
* downstream_queue_cls (details above)
¢ key (details above)
» The serialize attribute has been removed (details above)
The following changes affect specifically the ScrapyPriorityQueue class and may affect subclasses:
= Anewpriority () method has been added which, given a request, returns request .priority -1.
It is used in push () to make up for the removal of its priority parameter.
» The spider attribute has been removed. Use crawler. spider instead.

The following changes affect specifically the DownloaderAwarePriorityQueue class and may affect subclas-
ses:

266 Capitulo 7. All the rest

Scrapy Documentation, Release 2.2.0

= A new pqueues attribute offers a mapping of downloader slot names to the corresponding instances of
downstream_queue_cls.

(issue 3884)

7.1.5 Scrapy 1.8.0 (2019-10-28)

Highlights:

= Dropped Python 3.4 support and updated minimum requirements; made Python 3.8 support official

» New Request. from_ curl class method

= New ROBOTSTXT_PARSER and ROBOTSTXT_USER_AGENT settings

s New DOWNLOADER _CLIENT_TLS_ CIPHERS and DOWNLOADER CLIENT TLS VERBOSE_LOGGING
settings

Backward-incompatible changes

= Python 3.4 is no longer supported, and some of the minimum requirements of Scrapy have also changed:

cssselect 0.9.1

cryptography 2.0

Ixml 3.5.0

pyOpenSSL 16.2.0

queuelib 1.4.2

service_identity 16.0.0

six 1.10.0

Twisted 17.9.0 (16.0.0 with Python 2)

zope.interface 4.1.3

(issue 3892)

= JSONRequest is now called JsonRequest for consistency with similar classes (issue 3929, issue 3982)

= If you are using a custom context factory (DOWNLOADER CLIENTCONTEXTFACTORY),its __init__ met-
hod must accept two new parameters: t 1s_verbose_loggingand tls_ciphers (issue 2111, 1issue 3392,
issue 3442, issue 3450)

= TtemLoader now turns the values of its input item into lists:

>>> item = MyItem()

>>> item['field'] = 'valuel'

>>> loader = ItemLoader (item=item)
>>> item['field']

['"valuel']

This is needed to allow adding values to existing fields (loader.add_value ('field', 'value2')).

(issue 3804, issue 3819, issue 3897, issue 3976, issue 3998, issue 4036)

See also Deprecation removals below.

7.1. Release notes 267

https://github.com/scrapy/scrapy/issues/3884
https://cssselect.readthedocs.io/en/latest/index.html
https://cryptography.io/en/latest/
https://lxml.de/
https://www.pyopenssl.org/en/stable/
https://github.com/scrapy/queuelib
https://service-identity.readthedocs.io/en/stable/
https://six.readthedocs.io/
https://twistedmatrix.com/trac/
https://zopeinterface.readthedocs.io/en/latest/
https://github.com/scrapy/scrapy/issues/3892
https://github.com/scrapy/scrapy/issues/3929
https://github.com/scrapy/scrapy/issues/3982
https://github.com/scrapy/scrapy/issues/2111
https://github.com/scrapy/scrapy/issues/3392
https://github.com/scrapy/scrapy/issues/3442
https://github.com/scrapy/scrapy/issues/3450
https://github.com/scrapy/scrapy/issues/3804
https://github.com/scrapy/scrapy/issues/3819
https://github.com/scrapy/scrapy/issues/3897
https://github.com/scrapy/scrapy/issues/3976
https://github.com/scrapy/scrapy/issues/3998
https://github.com/scrapy/scrapy/issues/4036

Scrapy Documentation, Release 2.2.0

New features

A new Request.from_curl class method allows creating a request from a cURL command (issue 2985,
issue 3862)

Anew ROBOTSTXT _PARSER setting allows choosing which robots.txt parser to use. It includes built-in support
for RobotFileParser, Protego (default), Reppy, and Robotexclusionrulesparser, and allows you to implement
support for additional parsers (issue 754, issue 2669, issue 3796, issue 3935, issue 3969, issue 4006)

A new ROBOTSTXT USER_AGENT setting allows defining a separate user agent string to use for robots.txt
parsing (issue 3931, issue 3966)

Rule no longer requires a LinkExtractor parameter (issue 781, issue 4016)

Use the new DOWNLOADER CLIENT TLS_CIPHERS setting to customize the TLS/SSL ciphers used by the
default HTTP/1.1 downloader (issue 3392, issue 3442)

Set the new DOWNLOADER_CLIENT _TLS_VERBOSE_LOGGING setting to True to enable debug-level mes-
sages about TLS connection parameters after establishing HTTPS connections (issue 2111, issue 3450)

Callbacks that receive keyword arguments (see Request.chb_kwargs) can now be tested using the new
@ch_kwargs spider contract (issue 3985, issue 3988)

When a @scrapes spider contract fails, all missing fields are now reported (issue 766, issue 3939)

Custom log formats can now drop messages by having the corresponding methods of the configured
LOG_FORMATTER return None (issue 3984, issue 3987)

A much improved completion definition is now available for Zsh (issue 4069)

Bug fixes

ItemLoader.load_item () no longer makes later calls to TtemLoader.get_output_value () or
ItemLoader.load _item () return empty data (issue 3804, issue 3819, issue 3897, issue 3976, issue 3998,
issue 4036)

Fixed DummyStatsCollector raising a TypeError exception (issue 4007, issue 4052)

FilesPipeline.file path and ImagesPipeline.file path no longer choose file extensions
that are not registered with TANA (issue 1287, issue 3953, issue 3954)

When using botocore to persist files in S3, all botocore-supported headers are properly mapped now (issue 3904,
issue 3905)

FTP passwords in FEED_URT containing percent-escaped characters are now properly decoded (issue 3941)

A memory-handling and error-handling issue in scrapy.utils.ssl.get_temp_key_info () hasbeen
fixed (issue 3920)

Documentation

The documentation now covers how to define and configure a custom log format (issue 3616, issue 3660)
API documentation added for MarshalItemExporter and PythonItemExporter (issue 3973)
API documentation added for BaseItem and ItemMeta (issue 3999)

Minor documentation fixes (issue 2998, issue 3398, issue 3597, issue 3894, issue 3934, issue 3978, issue 3993,
issue 4022, issue 4028, issue 4033, issue 4046, issue 4050, issue 4055, issue 4056, issue 4061, issue 4072, issue
4071, issue 4079, issue 4081, issue 4089, issue 4093)

268

Capitulo 7. All the rest

https://github.com/scrapy/scrapy/issues/2985
https://github.com/scrapy/scrapy/issues/3862
https://www.robotstxt.org/
https://github.com/scrapy/scrapy/issues/754
https://github.com/scrapy/scrapy/issues/2669
https://github.com/scrapy/scrapy/issues/3796
https://github.com/scrapy/scrapy/issues/3935
https://github.com/scrapy/scrapy/issues/3969
https://github.com/scrapy/scrapy/issues/4006
https://www.robotstxt.org/
https://github.com/scrapy/scrapy/issues/3931
https://github.com/scrapy/scrapy/issues/3966
https://github.com/scrapy/scrapy/issues/781
https://github.com/scrapy/scrapy/issues/4016
https://github.com/scrapy/scrapy/issues/3392
https://github.com/scrapy/scrapy/issues/3442
https://github.com/scrapy/scrapy/issues/2111
https://github.com/scrapy/scrapy/issues/3450
https://github.com/scrapy/scrapy/issues/3985
https://github.com/scrapy/scrapy/issues/3988
https://github.com/scrapy/scrapy/issues/766
https://github.com/scrapy/scrapy/issues/3939
https://github.com/scrapy/scrapy/issues/3984
https://github.com/scrapy/scrapy/issues/3987
https://www.zsh.org/
https://github.com/scrapy/scrapy/issues/4069
https://github.com/scrapy/scrapy/issues/3804
https://github.com/scrapy/scrapy/issues/3819
https://github.com/scrapy/scrapy/issues/3897
https://github.com/scrapy/scrapy/issues/3976
https://github.com/scrapy/scrapy/issues/3998
https://github.com/scrapy/scrapy/issues/4036
https://docs.python.org/3/library/exceptions.html#TypeError
https://github.com/scrapy/scrapy/issues/4007
https://github.com/scrapy/scrapy/issues/4052
https://www.iana.org/assignments/media-types/media-types.xhtml
https://github.com/scrapy/scrapy/issues/1287
https://github.com/scrapy/scrapy/issues/3953
https://github.com/scrapy/scrapy/issues/3954
https://github.com/boto/botocore
https://github.com/scrapy/scrapy/issues/3904
https://github.com/scrapy/scrapy/issues/3905
https://github.com/scrapy/scrapy/issues/3941
https://github.com/scrapy/scrapy/issues/3920
https://github.com/scrapy/scrapy/issues/3616
https://github.com/scrapy/scrapy/issues/3660
https://github.com/scrapy/scrapy/issues/3973
https://github.com/scrapy/scrapy/issues/3999
https://github.com/scrapy/scrapy/issues/2998
https://github.com/scrapy/scrapy/issues/3398
https://github.com/scrapy/scrapy/issues/3597
https://github.com/scrapy/scrapy/issues/3894
https://github.com/scrapy/scrapy/issues/3934
https://github.com/scrapy/scrapy/issues/3978
https://github.com/scrapy/scrapy/issues/3993
https://github.com/scrapy/scrapy/issues/4022
https://github.com/scrapy/scrapy/issues/4028
https://github.com/scrapy/scrapy/issues/4033
https://github.com/scrapy/scrapy/issues/4046
https://github.com/scrapy/scrapy/issues/4050
https://github.com/scrapy/scrapy/issues/4055
https://github.com/scrapy/scrapy/issues/4056
https://github.com/scrapy/scrapy/issues/4061
https://github.com/scrapy/scrapy/issues/4072
https://github.com/scrapy/scrapy/issues/4071
https://github.com/scrapy/scrapy/issues/4071
https://github.com/scrapy/scrapy/issues/4079
https://github.com/scrapy/scrapy/issues/4081
https://github.com/scrapy/scrapy/issues/4089
https://github.com/scrapy/scrapy/issues/4093

Scrapy Documentation, Release 2.2.0

Deprecation removals

= scrapy.x1ib has been removed (issue 4015)

Deprecations
» The LevelDB storage backend (scrapy.extensions.httpcache.LeveldbCacheStorage) of
HttpCacheMiddleware is deprecated (issue 4085, issue 4092)

= Use of the undocumented SCRAPY_PICKLED_SETTINGS_TO_OVERRIDE environment variable is depre-
cated (issue 3910)

» scrapy.item.DictItem is deprecated, use Ttem instead (issue 3999)

Other changes

= Minimum versions of optional Scrapy requirements that are covered by continuous integration tests have been
updated:
* botocore 1.3.23
e Pillow 3.4.2
Lower versions of these optional requirements may work, but it is not guaranteed (issue 3892)
= GitHub templates for bug reports and feature requests (issue 3126, issue 3471, issue 3749, issue 3754)
= Continuous integration fixes (issue 3923)

= Code cleanup (issue 3391, issue 3907, issue 3946, issue 3950, issue 4023, issue 4031)

7.1.6 Scrapy 1.7.4 (2019-10-21)

Revert the fix for issue 3804 (issue 3819), which has a few undesired side effects (issue 3897, issue 3976).

As a result, when an item loader is initialized with an item, TtemLoader. load_item () once again makes later
callsto TtemLoader.get_output_value () or ItemLoader.load item () return empty data.

7.1.7 Scrapy 1.7.3 (2019-08-01)

Enforce Ixml 4.3.5 or lower for Python 3.4 (issue 3912, issue 3918).

7.1.8 Scrapy 1.7.2 (2019-07-23)

Fix Python 2 support (issue 3889, issue 3893, issue 3896).

7.1. Release notes 269

https://github.com/scrapy/scrapy/issues/4015
https://github.com/google/leveldb
https://github.com/scrapy/scrapy/issues/4085
https://github.com/scrapy/scrapy/issues/4092
https://github.com/scrapy/scrapy/issues/3910
https://github.com/scrapy/scrapy/issues/3999
https://github.com/boto/botocore
https://python-pillow.org/
https://github.com/scrapy/scrapy/issues/3892
https://github.com/scrapy/scrapy/issues/3126
https://github.com/scrapy/scrapy/issues/3471
https://github.com/scrapy/scrapy/issues/3749
https://github.com/scrapy/scrapy/issues/3754
https://github.com/scrapy/scrapy/issues/3923
https://github.com/scrapy/scrapy/issues/3391
https://github.com/scrapy/scrapy/issues/3907
https://github.com/scrapy/scrapy/issues/3946
https://github.com/scrapy/scrapy/issues/3950
https://github.com/scrapy/scrapy/issues/4023
https://github.com/scrapy/scrapy/issues/4031
https://github.com/scrapy/scrapy/issues/3804
https://github.com/scrapy/scrapy/issues/3819
https://github.com/scrapy/scrapy/issues/3897
https://github.com/scrapy/scrapy/issues/3976
https://github.com/scrapy/scrapy/issues/3912
https://github.com/scrapy/scrapy/issues/3918
https://github.com/scrapy/scrapy/issues/3889
https://github.com/scrapy/scrapy/issues/3893
https://github.com/scrapy/scrapy/issues/3896

Scrapy Documentation, Release 2.2.0

7.1.9 Scrapy 1.7.1 (2019-07-18)

Re-packaging of Scrapy 1.7.0, which was missing some changes in PyPIL.

7.1.10 Scrapy 1.7.0 (2019-07-18)

Note: Make sure you install Scrapy 1.7.1. The Scrapy 1.7.0 package in PyPI is the result of an erroneous commit
tagging and does not include all the changes described below.

Highlights:

Improvements for crawls targeting multiple domains
A cleaner way to pass arguments to callbacks

A new class for JSON requests

Improvements for rule-based spiders

New features for feed exports

Backward-incompatible changes

429 is now part of the RETRY_HTTP_CODES setting by default

This change is backward incompatible. If you don’t want to retry 429, you must override
RETRY_HTTP_CODES accordingly.

Crawler, CrawlerRunner.crawl and CrawlerRunner.create_crawler no longer accept a
Spider subclass instance, they only accept a Spider subclass now.

Spider subclass instances were never meant to work, and they were not working as one would expect: instead
of using the passed Spider subclass instance, their from crawler method was called to generate a new
instance.

Non-default values for the SCHEDULER_PRIORITY_ QUEUE setting may stop working. Scheduler priority
queue classes now need to handle Request objects instead of arbitrary Python data structures.

An additional crawler parameter has been addedtothe __init___ method of the Scheduler class. Custom
scheduler subclasses which don’t accept arbitrary parameters in their __init___ method might break because
of this change.

For more information, see SCHEDULER.

See also Deprecation removals below.

New features

= A new scheduler priority queue, scrapy .pqueues.DownloaderAwarePriorityQueue, may be ena-

bled for a significant scheduling improvement on crawls targetting multiple web domains, at the cost of no
CONCURRENT_REQUESTS_PER_IP support (issue 3520)

= A new Request.chb_kwargs attribute provides a cleaner way to pass keyword arguments to callback met-

hods (issue 1138, issue 3563)

= A new JSONReqguest class offers a more convenient way to build JSON requests (issue 3504, issue 3505)

270

Capitulo 7. All the rest

https://github.com/scrapy/scrapy/issues/3520
https://github.com/scrapy/scrapy/issues/1138
https://github.com/scrapy/scrapy/issues/3563
https://github.com/scrapy/scrapy/issues/3504
https://github.com/scrapy/scrapy/issues/3505

Scrapy Documentation, Release 2.2.0

= A process_request callback passed to the Rule __init__ method now receives the Response object
that originated the request as its second argument (issue 3682)

= A new restrict_text parameter for the LinkExtractor __init___ method allows filtering links by
linking text (issue 3622, issue 3635)

= A new FEED STORAGE_S3_ACL setting allows defining a custom ACL for feeds exported to Amazon S3
(issue 3607)

» Anew FEED STORAGE_FTP_ACTIVE setting allows using FTP’s active connection mode for feeds exported
to FTP servers (issue 3829)

= A new METAREFRESH_TGNORE_TAGS setting allows overriding which HTML tags are ignored when sear-
ching a response for HTML meta tags that trigger a redirect (issue 1422, issue 3768)

» A new redirect_reasons request meta key exposes the reason (status code, meta refresh) behind every
followed redirect (issue 3581, issue 3687)

= The SCRAPY_CHECK variable is now set to the t rue string during runs of the check command, which allows
detecting contract check runs from code (issue 3704, issue 3739)

» Anew Ttem.deepcopy () method makes it easier to deep-copy items (issue 1493, issue 3671)
» CoreStats alsologs elapsed_time_seconds now (issue 3638)
= Exceptions from ItemLoader input and output processors are now more verbose (issue 3836, issue 3840)

» Crawler, CrawlerRunner.crawl and CrawlerRunner.create_crawler now fail gracefully if
they receive a Spider subclass instance instead of the subclass itself (issue 2283, issue 3610, issue 3872)

Bug fixes

m process_spider_exception () is now also invoked for generators (issue 220, issue 2061)
= System exceptions like KeyboardInterrupt are no longer caught (issue 3726)

» JtemLoader.load item() no longer makes later calls to TtemLoader.get_output_value () or
ItemLoader.load item () return empty data (issue 3804, issue 3819)

= The images pipeline (ImagesPipeline) no longer ignores these Amazon S3 settings:
AWS_ENDPOINT_URL, AWS_REGION_NAME, AWS_USE_SSL, AWS_VERIFY (issue 3625)

» Fixed a memory leak in scrapy.pipelines.media.MediaPipeline affecting, for example, non-200
responses and exceptions from custom middlewares (issue 3813)

= Requests with private callbacks are now correctly unserialized from disk (issue 3790)

» FormRequest.from_response () now handles invalid methods like major web browsers (issue 3777,
issue 3794)

Documentation
= A new topic, Selecting dynamically-loaded content, covers recommended approaches to read dynamically-
loaded data (issue 3703)
= Broad Crawls now features information about memory usage (issue 1264, issue 3866)

= The documentation of Rule now covers how to access the text of a link when using CrawlSpider (issue
3711, issue 3712)

= A new section, Writing your own storage backend, covers writing a custom cache storage backend for
HttpCacheMiddleware (issue 3683, issue 3692)

7.1. Release notes 271

https://github.com/scrapy/scrapy/issues/3682
https://github.com/scrapy/scrapy/issues/3622
https://github.com/scrapy/scrapy/issues/3635
https://github.com/scrapy/scrapy/issues/3607
https://github.com/scrapy/scrapy/issues/3829
https://github.com/scrapy/scrapy/issues/1422
https://github.com/scrapy/scrapy/issues/3768
https://github.com/scrapy/scrapy/issues/3581
https://github.com/scrapy/scrapy/issues/3687
https://github.com/scrapy/scrapy/issues/3704
https://github.com/scrapy/scrapy/issues/3739
https://github.com/scrapy/scrapy/issues/1493
https://github.com/scrapy/scrapy/issues/3671
https://github.com/scrapy/scrapy/issues/3638
https://github.com/scrapy/scrapy/issues/3836
https://github.com/scrapy/scrapy/issues/3840
https://github.com/scrapy/scrapy/issues/2283
https://github.com/scrapy/scrapy/issues/3610
https://github.com/scrapy/scrapy/issues/3872
https://github.com/scrapy/scrapy/issues/220
https://github.com/scrapy/scrapy/issues/2061
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://github.com/scrapy/scrapy/issues/3726
https://github.com/scrapy/scrapy/issues/3804
https://github.com/scrapy/scrapy/issues/3819
https://github.com/scrapy/scrapy/issues/3625
https://github.com/scrapy/scrapy/issues/3813
https://github.com/scrapy/scrapy/issues/3790
https://github.com/scrapy/scrapy/issues/3777
https://github.com/scrapy/scrapy/issues/3794
https://github.com/scrapy/scrapy/issues/3703
https://github.com/scrapy/scrapy/issues/1264
https://github.com/scrapy/scrapy/issues/3866
https://github.com/scrapy/scrapy/issues/3711
https://github.com/scrapy/scrapy/issues/3711
https://github.com/scrapy/scrapy/issues/3712
https://github.com/scrapy/scrapy/issues/3683
https://github.com/scrapy/scrapy/issues/3692

Scrapy Documentation, Release 2.2.0

A new FAQ entry, How to split an item into multiple items in an item pipeline?, explains what to do when you
want to split an item into multiple items from an item pipeline (issue 2240, issue 3672)

Updated the FAQ entry about crawl order to explain why the first few requests rarely follow the desired order
(issue 1739, issue 3621)

The LOGSTATS INTERVAL setting (issue 3730), the FilesPipeline.file path and
ImagesPipeline.file path methods (issue 2253, issue 3609) and the Crawler.stop () met-
hod (issue 3842) are now documented

Some parts of the documentation that were confusing or misleading are now clearer (issue 1347, issue 1789,
issue 2289, issue 3069, issue 3615, issue 3626, issue 3668, issue 3670, issue 3673, issue 3728, issue 3762, issue
3861, issue 3882)

Minor documentation fixes (issue 3648, issue 3649, issue 3662, issue 3674, issue 3676, issue 3694, issue 3724,
issue 3764, issue 3767, issue 3791, issue 3797, issue 3806, issue 3812)

Deprecation removals

The following deprecated APIs have been removed (issue 3578):

scrapy.conf (use Crawler.settings)
From scrapy.core.downloader.handlers:

e http.HttpDownloadHandler (use httpl0.HTTP10DownloadHandler)
scrapy.loader.ItemLoader._get_values (use _get_xpathvalues)
scrapy.loader.XPathItemLoader (use ItemLoader)
scrapy.log (see Logging)

From scrapy.pipelines:

e files.FilesPipeline.file_key (use file_path)

* images.ImagesPipeline.file_key (use file_path)

* images.ImagesPipeline.image_key (use file_path)

* images.ImagesPipeline.thumb_key (use thumb_path)

From both scrapy.selector and scrapy.selector.lxmlsel:

e HtmlXPathSelector (use Selector)

e XmlXPathSelector (use Selector)

e XPathSelector (use Selector)

e XPathSelectorList (use Selector)

From scrapy.selector.csstranslator:

e ScrapyGenericTranslator (use parsel.csstranslator.GenericTranslator)

* ScrapyHTMLTranslator (use parsel.csstranslator. HTMLTranslator)

* ScrapyXPathExpr (use parsel.csstranslator. XPathExpr)

From Selector:
e _root (boththe __init__ method argument and the object property, use root)

* extract_unquoted (use getall)

272

Capitulo 7. All the rest

https://github.com/scrapy/scrapy/issues/2240
https://github.com/scrapy/scrapy/issues/3672
https://github.com/scrapy/scrapy/issues/1739
https://github.com/scrapy/scrapy/issues/3621
https://github.com/scrapy/scrapy/issues/3730
https://github.com/scrapy/scrapy/issues/2253
https://github.com/scrapy/scrapy/issues/3609
https://github.com/scrapy/scrapy/issues/3842
https://github.com/scrapy/scrapy/issues/1347
https://github.com/scrapy/scrapy/issues/1789
https://github.com/scrapy/scrapy/issues/2289
https://github.com/scrapy/scrapy/issues/3069
https://github.com/scrapy/scrapy/issues/3615
https://github.com/scrapy/scrapy/issues/3626
https://github.com/scrapy/scrapy/issues/3668
https://github.com/scrapy/scrapy/issues/3670
https://github.com/scrapy/scrapy/issues/3673
https://github.com/scrapy/scrapy/issues/3728
https://github.com/scrapy/scrapy/issues/3762
https://github.com/scrapy/scrapy/issues/3861
https://github.com/scrapy/scrapy/issues/3861
https://github.com/scrapy/scrapy/issues/3882
https://github.com/scrapy/scrapy/issues/3648
https://github.com/scrapy/scrapy/issues/3649
https://github.com/scrapy/scrapy/issues/3662
https://github.com/scrapy/scrapy/issues/3674
https://gith